What is virtual server?

Virtual server is a highly scalable and highly available server built on a cluster of real servers. The architecture of server cluster is fully transparent to end users, and the users interact with the cluster system as if it were only a single high-performance virtual server. Please consider the following figure.

The real servers and the load balancers may be interconnected by either high-speed LAN or by geographically dispersed WAN. The load balancers can dispatch requests to the different servers and make parallel services of the cluster to appear as a virtual service on a single IP address, and request dispatching can use IP load balancing technologies or application-level load balancing technologies. Scalability of the system is achieved by transparently adding or removing nodes in the cluster. High availability is provided by detecting node or daemon failures and reconfiguring the system appropriately.

Goals

The basic goal of the Linux Virtual Server Project is to:

Build a high-performance and highly available server for Linux using clustering technology, which provides good scalability, reliability and serviceability.
The LVS cluster system is also known as load balancing server cluster.

Why virtual server?

With the explosive growth of the Internet and its increasingly important role in our lives, the traffic on the Internet is increasing dramatically, which has been growing at over 100% annual rate. The workload on the servers is increasing rapidly so that servers will be easily overloaded for a short time, especially for a popular web site. To overcome the overloading problem of the servers, there are two solutions. One is the single server solution, i.e. to upgrade the server to a higher performance server, but it will soon be overloaded when requests increases so that we have to upgrade it again, the upgrading process is complex and the cost is high. The other is the multiple server solution, i.e. to build a scalable network service system on a cluster of servers. When load increases, we can simply add a new server or more into cluster to meet the increasing requests, and commodity server is of highest performance/cost ratio. Therefore, it is more scalable and more cost-effective to build server cluster system for network services.

There are several methods to construct the cluster of servers.

· DNS based load balancing cluster

DNS load balancing is probably the simplest method to build network service cluster. It uses Domain Name System to distribute requests to different servers through resolving the domain name to different IP addresses of servers. When a DNS request comes to the DNS server to resolve the domain name, the DNS server gives out one of server IP addresses based on scheduling strategies, such as in round-robin manner, then subsequent requests from clients using the same local caching name server are sent to the same server in the specified time-to-live (TTL) of name resolving.

However, due to the caching nature of clients and hierarchical DNS system, it easily leads to dynamic load imbalance among the servers, thus it is not easy for a server to handle its peak load. The TTL value of a name mapping can't be well chosen at the DNS server, with small values DNS traffic is high and DNS server will be a bottleneck, and with high values the dynamic load imbalance will get even worse. Even the TTL value is set with zero, the scheduling granularity is per host, different users' access pattern may lead to dynamic load imbalance, because some people may pull lots of pages from the site, and others may just surf a few pages and go away. Moreover, it is not so reliable, when a server node fails, the clients who maps the name to the IP address will find the server is down, and the problem still exists even if they press "reload" or "refresh" button in their browsers.

· Dispatcher based load balancing cluster

Dispatcher, also known as load balancer, can be used to distribute load among servers in a cluster, so that the parallel services of servers can appear as a virtual service on a single IP address, and end users interact as if it were a single server without knowing all servers in clusters. Compared to DNS based load balancing, dispatcher can schedule requests at fine granularity, such as per connection, for better load balancing among servers. Failure can be masked when one server or more fail. Server management is becoming easy, and administrator can take a server or more in and out of service at any time, which won't interrupt services to end users.

Load balancing can be done in two levels, application-level and IP-level. For example, Reverse-proxy and pWEB is an application-level load balancing method to build a scalable web server. They forward the HTTP request to the different web servers in the cluster, get back the result, and then return it to the clients. Since the overhead of dealing the HTTP requests and replies in the application-level is high, I believe the application-level load balancer will be a new bottleneck when the number of server nodes increase to 5 or more, which depends on the throughput of each server.

I prefer the IP-level load balancing, because the overhead of IP load balancing is small and the maxim number of server nodes can reach 25 or up to 100. That's IP Virtual Server code designed for. How it works will be explained in detail in the next section.

How virtual server works?

Now virtual server is implemented in three ways. There are three IP load balancing techniques (packet forwarding methods) existing together in the LinuxDirector. They are virtual server via NAT, virtual server via IP tunneling and virtual server via direct routing. Please see the three separate sections for their working principles and configurations. How to build the kernels and how to use them are also explained in details there too.

· Virtual Server via NAT
· Virtual Server via IP Tunneling
· Virtual Server via Direct Routing
The following subsections will explain their advantages and disadvantages. The comparison of VS/NAT, VS/TUN and VS/DR is summarized in the following table.

	
	VS/NAT
	VS/TUN
	VS/DR

	server
	any
	tunneling
	non-arp device

	server network
	private
	LAN/WAN
	LAN

	server number
	low (10~20)
	high
	high

	server gateway
	load balancer
	own router
	own router

Virtual Server via NAT

The advantage of the virtual server via NAT is that real servers can run any operating system that supports TCP/IP protocol, real servers can use private Internet addresses, and only an IP address is needed for the load balancer.

The disadvantage is that the scalability of the virtual server via NAT is limited. The load balancer may be a bottleneck of the whole system when the number of server nodes (general PC servers) increase to around 20 or more, because both the request packets and response packets are need to be rewritten by the load balancer. Supposing the average length of TCP packets is 536 Bytes, the average delay of rewriting a packet is around 60us (on Pentium processor, this can be reduced a little by using of higher processor), the maximum throughput of the load balancer is 8.93 MBytes/s. Assuming the average throughput of real servers is 400Kbytes/s, the load balancer can schedule 22 real servers.

Virtual server via NAT can meet the performance request of many servers. Even when the load balancer is becoming a bottleneck of the whole system, there are two methods to solve it, one is the hybrid approach, and the other is the virtual server via IP tunneling or virtual server via direct routing. In the DNS hybrid approach, there are many load balancers who all have their own server clusters, and the load balancers are grouped at a single domain name by Round-Round DNS. You can try to use VS-Tunneling or VS-DRouting for good scalability, you can also try the nested VS load balancers approach, the first front-end is the VS-Tunneling or VS-DRouting load balancer, the second layer is many VS-NAT load balancers, which all have their own clusters.

Virtual Server via IP Tunneling

In the virtual server via NAT, request and response packets all need to pass through the load balancer, the load balancer may be a new bottleneck when the number of server nodes increase to 20 or more, because the throughput of the network interface is limited eventually. We can see from many Internet services (such as web service) that the request packets are often short and response packets usually have large amount of data.

In the virtual server via IP tunneling, the load balancer just schedules requests to the different real servers, and the real servers return replies directly to the users. So, the load balancer can handle huge amount of requests, it may schedule over 100 real servers, and it won't be the bottleneck of the system. :-) Thus using IP tunneling will greatly increase the maximum number of server nodes for a load balancer. The maximum throughput of the virtual server can reach over 1Gbps, even if the load balancer just has 100Mbps full-duplex network adapter.

The IP tunneling feature can be used to build a very high-performance virtual server. It is extremely good to build a virtual proxy server, because when the proxy servers get request, it can access the Internet directly to fetch objects and return them directly to the users.

However, all servers must have "IP Tunneling"(IP Encapsulation) protocol enabled, I just tested it on Linux IP tunneling. If you make virtual server work on servers running other operating systems with IP tunneling, please let me know, I will be glad to hear that.

Virtual Server via Direct Routing

Like in the virtual server via tunneling approach, LinuxDirector processes only the client-to-server half of a connection in the virtual server via direct routing, and the response packets can follow separate network routes to the clients. This can greatly increase the scalability of virtual server.

Compared to the virtual server via IP tunneling approach, this approach doesn't have tunneling overhead(In fact, this overhead is minimal in most situations), but requires that one of the load balancer's interfaces and the real servers' interfaces must be in the same physical segment.

General Architecture of LVS Clusters

For transparency, scalability, availability and manageability of the whole system, we usually adopt three-tie architecture in LVS clusters illustrated in the following figure.

[image: image1.jpg]Uzer ragic Monitar

Internetintranet

Dtobase

Network Fie
Load Bataned Rl Servar2 System

Vitual 1P Address

‘esa

Distributed
Fie System

R Servar 1

Loadt Balencer Server Cluster Storage

The three-tie architecture consists of

· Load Balancer, which is the front-end machine of the whole cluster systems, and balances requests from clients among a set of servers, so that the clients consider that all the services is from a single IP address.

· Server Cluster, which is a set of servers running actual network services, such as Web, Mail, FTP, DNS and Media service.

· Shared Storage, which provides a shared storage space for the servers, so that it is easy for the servers to have the same contents and provide the same services.

Load balancer is the single entry-point of server cluster systems, it can run IPVS that implements IP load balancing techniques inside the Linux kernel, or KTCPVS that implements application-level load balancing inside the Linux kernel. When IPVS is used, all the servers are required to provide the same services and contents, the load balancer forward a new client request to a server according to the specified scheduling algorithms and the load of each server. No matter which server is selected, the client should get the same result. When KTCPVS is used, servers can have different contents, the load balancer can forward a request to a different server according to the content of request. Since KTCPVS is implemented inside the Linux kernel, the overhead of relaying data is minimal, so that it can still have high throughput.

The node number of server cluster can be changed according to the load that system receives. When all the servers are overloaded, more new servers can be added to handle increasing workload. For most Internet services such as web, the requests are usually not highly related, and can be run parallely on different servers. Therefore, as the node number of server cluster increases, the performance of the whole can almost be scaled up linearly.

Shared storage can be database systems, network file systems, or distributed file systems. The data that server nodes need to update dynamically should be stored in data based systems, when server nodes read or write data in database systems parallely, database systems can guarantee the consistency of concurrent data access. The static data is usually kept in network file systems such as NFS and CIFS, so that data can be shared by all the server nodes. However, the scalability of single network file system is limited, for example, a single NFS/CIFS can only support data access from 4 to 8 servers. For large-scale cluster systems, distributed/cluster file systems can be used for shared storage, such as GPFS, Coda and GFS, then shared storage can be scaled up according to system requirement too.

Load balancer, server cluster and shared storage are usually connected by high-speed networks, such as 100Mbps Ethernet network and Gigabit Ethernet network, so that the network will not become the bottleneck of system when the system grows up.

High Availability

As more and more mission-critical applications move on the Internet, providing highly available services becomes increasingly important. One of the advantages of a clustered system is that it has hardware and software redundancy, because the cluster system consists of a number of independent nodes, and each node runs a copy of operating system and application software. High availability can be achieved by detecting node or daemon failures and reconfiguring the system appropriately, so that the workload can be taken over by the remaining nodes in the cluster.

In fact, high availability is a big field. An advanced highly available system may have a reliable group communication sub-system, membership management, quoram sub-systems, concurrent control sub-system and so on. There must be a lot of work to do. However, we can use some existing software packages to construct highly available LVS cluster systems now.

Working Principle

In general, there are service monitor daemons running on the load balancer to check server health periodically, as illustrated in the figure of LVS high availability. If there is no response for service access request or ICMP ECHO_REQUEST from a server in a specified time, the service monitor will consider the server is dead and remove it from the available server list at the load balancer, thus no new requests will be sent to this dead server. When the service monitor detects the dead server has recovered to work, the service monitor will add the server back to the available server list. Therefore, the load balancer can automatically mask the failure of service daemons or servers. Furthermore, administrators can also use system tools to add new servers to increase the system throughput or remove servers for system maintenance, without bringing down the whole system service.

[image: image2.jpg]Internet/Intranet

Database

Virtus
Address

Real Servr2

Network File
System

Distributed
File System

Load Balancer Server Cluster Storage

High Availability of Linux Virtual Server

Now the load balancer might become a single failure point of the whole system. In order to prevent the whole system from being out of service because of the load balancer failure, we need setup a backup (or several backups) of the load balancer. Two heartbeat daemons run on the primary and the backup respectively, they heartbeat the message like "I'm alive" each other through serial lines and/or network interfaces periodically. When the heartbeat daemon of the backup cannot hear the heartbeat message from the primary in the specified time, it will take over the virtual IP address to provide the load-balancing service. When the failed load balancer comes back to work, there are two solutions, one is that it becomes the backup load balancer automatically, the other is the active load balancer releases the VIP address, and the recover one takes over the VIP address and becomes the primary load balancer again.

The primary load balancer has state of connections, i.e. which server the connection is forwarded to. If the backup load balancer takes over without those connections information, the clients have to send their requests again to access service. In order to make load balancer failover transparent to client applications, we implement connection synchronization in IPVS, the primary IPVS load balancer synchronizes connection information to the backup load balancers through UDP multicast. When the backup load balancer takes over after the primary one fails, the backup load balancer will have the state of most connections, so that almost all connections can continue to access the service through the backup load balancer.

The availability of database, network file system or distributed file system is not addressed here.

Working Examples

There are several software packages in conjuction with LVS to provide high availability of the whole system, such as Red Hat Piranha, Keepalived, UltraMonkey, heartbeat plus ldirectord, and heartbeat plus mon.

The following examples of building highly available LVS systems are only for reference.

· Using Piranha to build highly available LVS systems
· Using Keepalived to build highly available LVS systems
· Using UltraMonkey to build highly available LVS systems
· Using heartbeat+mon+coda to build highly available LVS systems
· Using heartbeat+ldirectord to build highly available LVS systems
There must be many other methods to build highly available LVS systems, please drop me a message if you have your methods.

Software

IPVS

IPVS implements transport-layer load balancing (layer-4 switching) inside the Linux kernel. Click IPVS software page for all the IPVS patches and code.

IPVS Branches

	Branch
	Version
	Release date
	Status
	License

	IPVS for kernel 2.6
	1.2.1
	24-Dec-2004
	Stable
	GNU General Public License (GPL)

	IPVS for kernel 2.5
	1.1.7
	5-Jul-2003
	Devel
	GNU General Public License (GPL)

	IPVS for kernel 2.4
	1.0.12
	17-Nov-2004
	Stable
	GNU General Public License (GPL)

	IPVS for kernel 2.2
	1.0.8
	14-May-2001
	Stable
	GNU General Public License (GPL)

[image: image3.png]

[image: image4.png]

[image: image5.png]

Julian's LVS stuff

Julian has been writting a lot of cool LVS stuff, which includes a LVS throughput testing tool, netparse monitor program and many LVS patches. You can find them at Julian's Software and Patches page.

Alexandre's software

Alexandre has been writting a lot of LVS-related software, which includes Keepalived -- a service monitor for LVS, LVS Graphical Stats Processor, VRRPv2, and so on. See Alexandre's Software Page for more information.

KTCPVS

KTCPVS implements application-level load balancing (layer-7 switching) inside the Linux kernel, see the KTCPVS page for more information.

TCPSP

TCPSP implements tcp splicing for the Linux kernel, see the TCPSP page for more information.

TCPHA

TCPHA is an open source TCP handoff implementation for the Linux kernel, written by Li Wang. See the TCPHA Project for more information.

Other software components for LVS

Linux-HA heartbeat package
This package monitors hosts and informs the 2-node cluster when one of them dies. It includes Horms's code from "fake" below for IP address takeover. It can use serial, UDP broadcast and PPP/UDP heartbeats.

Mon
It is a general-purpose resource monitoring system. It can be extended for the LVS cluster management.

lvs-gui
The lvs-gui enables the configuration of servers running The Linux Virtual Server kernel patches. The RPMS of the latest ipvsadm is also available there.

Piranha
Piranha is the clustering product from Red Hat Inc., it includes the LVS kernel code, a GUI-based cluster configuration tool and cluster monitoring tool. The whitepaper of Piranha and Piranha HOWTO are available at Red Hat web site. The RPMS and SRPMS of piranha can be found in the RedHat 6.1 distribution, or can be downloaded from the ftp.redhat.com site.

Ultra Monkey
Ultra Monkey is a complete open source server farm solution for linux, providing high availability and load balancing. See the Ultra Monkey site for more information.

Keepalived
Keepalived implements a framework based on three family checks: Layer3, Layer4 & Layer5. This framework gives the daemon the ability of checking a LVS server pool states. When one of the server of the LVS server pool is down, keepalived informs the linux kernel via a setsockopt call to remove this server entrie from the LVS topology.

ipvsman
ipvsman is a ncurses GUI for the ipvs linux load balancer. ipvsmand is a multiple threaded life-keeping daemon. This all-in-one solution makes it easy to steer ipvs in real time with additional robust service life-keeping.

Net-SNMP-LVS-Module
net-snmpd-lvs-module is a dynamicaly loadable shared object for SNMP to get the configuration and some statistical information from the Linux kernel with IPVS support.

LVSM
LVSM is the linux virtual server manager. It is a package which is designed to simplify creation and management of LVS based clusters.

lvs-kiss
lvs-kiss is a daemon which enables you to create load balanced, high availability services.

SCOP
SCOP is a PHP-based web application to manage heartbeat, ipvs and ldirectord software. With SCOP you can start/stop services,view/edit configuration files, make backups, take a server online offline, add/remove virtual/real servers, etc.

LVS webmin module
The LVS webmin module is a third-party module for webmin.

LVS config scripts
LVS config scripts can help configure LVS and mon and are available on Joe's LVS webpage.

iptoip
iptoip is to help end-users to simply configure an ipvsadm forwarding table by an xml config file.

lvs-snmp
lvs-snmp is UCD-SNMP module for LVS. It seems as if the project were not maintained now.

LVS Documentation

This is a collection of LVS documents, some of them are in progress, some are in Chinese.

1. Overview documents

The article "Linux Virtual Server Clusters: Build highly-scalable and highly-available network services at low cost" written by Wensong Zhang and Wenzhuo Zhang appeared in the November 2003 issue of Linux Magazine.

The presentation of "Linux Virtual Server: Linux Server Clusters for Scalable Network Services" (ppt, 534K) was given at Free Software Symposium 2002, Tokyo, Japan.

The paper "Linux Virtual Server for Scalable Network Services" (gzipped postscript, 96K) (pdf, 235K) was published at Ottawa Linux Symposium 2000. Here are the slide (Applixware slide file, 634K) and the small slide (PDF, 510K).

Load Balancing The UK National JANET Web Cache Service Using Linux Virtual Servers (local copy) by Michael Sparks at UK National Janet Web Cache Service, November, 1999.

Lars Marowsky-Bree gave a talk about Linux Virtual Servers on Linux Kongress'99. Here is his presentation (MagicPoint, 418K).

Joseph Mack gave a good talk about Linux Virtual Server at LinuxExpo'99 on May 20, 1999. The html is available on Joe's LVS page. Thanks Joe!

The paper "Creating Linux Virtual Servers" (gzipped postscript, 79K) (html) have been accepted for publication in the LinuxExpo 1999 Conference.

2. Manuals and internal documents

The following will be your primary resource for running Linux Virtual Server:

· The LVS-HOWTO and LVS-mini-HOWTO written by Joseph Mack.

· The LVS/NAT working principle and configuration instructions.
· The LVS/TUN working principle and configuration instructions.
· The LVS/DR working principle and configuration instructions.
· High availabilty issues of LVS
· Job scheduling algorithms used in LVS
· A document about the local node feature
· The arp problem of LVS/TUN and LVS/DR
· The persistence handling in LVS
· LVS defense strategies against DoS attack
· IPVS connection synchronization
· IPVS sysctl variables
· Using LVS/TUN with FreeBSD and Solaris Real Servers
· Community contributed LVS knowledge base - wiki site

The Linux Virtual Server mailing list archives are available here, where maybe you can find some useful information to solve your problem.

3. Performance

	Internet Appliance, Inc. build a web cluster product based on LVS and Coda. eTesting Labs did performance testing on their product, the testing report (local copy) is also available. (May 2001)

Patrick O'Rourke and Mike Keefe at Mission Critical Linux evaluated the performance of LVS, the report in compressed postscipt is available here. Comments from Ratz. (April 2001)

Joseph Mack's LVS Performance article, "Initial Tests with a single Realserver LVS" is available on Joe's LVS page.
	[image: image6.png]

[image: image7.png]

[image: image8.png]

4. Books

IBM has published a Redbook called "IBM eServer BladeCenter, Linux, and Open Source: Blueprint for e-business on demand". It includes load balanced services using Linux Virtual Server (LVS) and failover with Linux Heartbeat.

Karl Kopper published a book entitled "The Linux Enterprise Cluster: Build a Highly Available Cluster with Commodity Hardware and Free Software" in May 2005. The book has several chapters about LVS.

5. Misc

The LVS survey page shows the scale, software, service of some LVS clusters participating in the survey.

The LVS deployment page shows that some sites we know are using LVS to build scalable network services.

Joseph Mack wrote the "1st LVS Trivia Quiz" to coincide with the Ottawa Linux Symposium 19-22 Jul 2000. It's available on Joe's LVS page.

The LVS announcement was posted to the media on November 12, 1999.

Joe also made a nice LVS graphics for T-shirts and buttons in pdf format. It's available on Joe's LVS page.

Pictures and write ups of conferences and meetings where LVS people have attended and/or given presentations are on Joe's LVS page.

6. Old documents

Robert Thomas provided the Greased Turkey document about how to setup a load-sharing server. Thank Rob! This document covers the basics of what virtual server is, how it works, and how to set it up, which are explained in details via his virtual proxy server. It is to expand to cover a decent man (8) page, and a FAQ. By the way, the virtual server can be used for ftp service.
PAGE
4

