Programmer to Programmer™

Beginning

Shell Scripting

Eric Foster-Johnson, John C. Welch, Micah Anderson

AN

Updates, source code, and Wrox technical support at www.wrox.com

Beginning Shell Scripting

Eric Foster-Johnson, John C. Welch, and Micah Anderson

WILEY

Wiley Publishing, Inc.

Beginning Shell Scripting
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-7645-8320-9
ISBN-10: 0-7645-8320-4

Manufactured in the United States of America
10987654321
IMA/QW/QU/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN REN-
DERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGA-
NIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DIS-
APPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Cataloging-in-Publication Data

Foster-Johnson, Eric.
Beginning shell scripting / Eric Foster-Johnson, John C. Welch, and Micah Anderson.
p.cm.
Includes index.
ISBN-13: 978-0-7645-8320-9
ISBN-10: 0-7645-8320-4 (paper/website)
1. Operating systems (Computers) I. Welch, John C., 1967-II. Anderson, Micah, 1974 III. Title.
QA76.76.063F59717 2005
005.4' 3—dc22
2005002075

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

About the Authors

Eric Foster-Johnson (Arden Hills, MN) is a veteran programmer who works daily with Linux, Unix,
Windows, Mac OS X, and other operating systems. By day, he writes enterprise Java software for
ObjectPartners, a Minnesota consulting firm. He has authored a number of Linux and Unix titles includ-
ing Red Hat RPM Guide, Teach Yourself Linux, Teach Yourself Unix, and Perl Modules.

To Katya and Nalana.

John C. Welch (Boston, MA) has more than ten years of Mac experience in the trenches of the IT world.
He packs the hall at Macworld Expo where he’s a regular speaker, sharing his experiences and knowl-
edge on using Macs effectively in business and enterprise IT environments. John’s articles are frequently
featured in MacTech Magazine and WorkingMac.com, and he is semi-regularly featured on The Mac Show
conducting interviews with the geekier side of the Mac community. He’s recently been touring the coun-
try presenting seminars on Mac OS X administration to IT professionals from coast to coast.

First and foremost, this is dedicated to my son, Alex, who is always the angel on my shoulder.

As an only child, I've “adopted” my own family over the years to make up for the one I didn’t grow up
with, so in no particular order: Adrian, Jenny, Melissa, Sly, Web, Karen, Skip, Gypsye, Schoun, Harv,
Jessica, the MacTech Crew, Sam, Steve, Shawn, Hilary, the YML list, the list that is never named, and
too many others who help me out in myriad ways.

Oh, and to Randy Milholland, whose work has kept me sane in this very odd world.

Micah Anderson has been a Unix system administrator for more than a decade. He is a Debian
GNU/Linux developer and works as an independent consultant building alternative communication
infrastructure and supporting the technology needs of positive grassroots alternatives.

This is dedicated to my parents, who got me started hacking on the Timex Sinclair and have always sup-
ported me, no matter what I do. This is also dedicated to those around the world who have struggled for
horizontal self-determination in the face of oppression: those who inspire people to dream of a better
world by doing something about it. Slow and steady wins the race.

Credits

Acquisitions Editor
Debra Williams Cauley

Development Editor
Sara Shlaer

Technical Editor
Dilip Thomas

Copy Editors
Nancy Rapoport
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Carrie Foster

Lauren Goddard

Denny Hager

Joyce Haughey

Jennifer Heleine

Barry Offringa

Quality Control Technician
Laura Albert

Proofreading and Indexing
TECHBOOKS Production Services

Contents

Introduction xiii
Chapter 1: Introducing Shells 1
What Is a Shell? 2
Why Use Shells? 3
What Kind of Shells Are There? 4
The Bourne Shell 4
The C Shell 4
The Korn Shell 5
Bash, the Bourne Again Shell 6
tcsh, the T C Shell 6
Other Shells 7
Graphical Shells 7
The Official POSIX Shell 8
Default Shells 8
Choosing a Shell 9
Changing Your Default Shell 9
Running a Shell from Within Another Shell 12
Finding Out More About the Shell 13
How Do Shells Fit into a Graphical Environment? 13
Running Shells on Linux 15
Running Shells on Mac 0S X 17
Running Shells on Unix Systems 18
Running Shells on Windows —Isn’t command.com Enough? 18
Running Shells on PDAs and Other Systems 19
Entering Commands 20
Determining Which Shell You Are Running 21
Command-Line Options 23
Command Editing 27
Command Substitution 27
Viewing the Command History 31
Calling Up an Editor 33
Using File-Name Completion 34
Working with Wildcards 35
The * Wildcard 35
The ? Wildcard 37
Running Commands in the Background 37
Summary 38

Contents

Chapter 2: Introducing Shell Scripts 39
What Are Shell Scripts? 40
Alternatives to Shells: Other Scripting Languages 42

Perl 43
Python 45
Tcl 46
MS-DOS Batch Files 47
Tools to Edit Shell Scripts 47
Using Legacy Editors 47
Moving to Graphical Text Editors 59
Writing Scripts 65
Remembering Commands So You Don’t Have To 66
Outputting Text 67
Variables 71
Gathering Input 76
Commenting Your Scripts 78
Continuing Lines 81
Summary 82
Exercises 83

Chapter 3: Controlling How Scripts Run 85
Referencing Variables 85
Looping and Iteration 89

Looping over Files 90
Looping for a Fixed Number of Iterations 93
Looping Like a C Program —the bash Shell 96
Looping in the C Shell 98
Nested Loops 99
Checking Conditions with if 100
Or Else, What? 101
What Is Truth? 102
Redirecting Output 106
Using elif (Short for else if) 111
Nesting if Statements 113
Testing with the test Command 114
Comparing Numbers 114
Comparing Text Strings 117
Testing Files 120
Using the Binary and Not Operators 121
Creating Shorthand Tests with [123
Making Complex Decisions with case 125
Handling Problematic Input 127
Using case with the C Shell 129

Vi

Contents

Looping While a Condition Is True 131
Looping Until a Condition Is True 132
Summary 134
Exercises 134
Chapter 4. Interacting with the Environment 135
Examining Environment Variables 135
Reading Environment Variables 136
Setting Environment Variables 150
Customizing Your Account 153
How the Bourne Shell Starts Up 153
How the Korn Shell Starts Up 153
How the C Shell Starts Up 154
How the T C Shell Starts Up 154
How Bash Starts Up 154
Handling Command-Line Arguments 155
Reading Command-Line Arguments with the Bourne Shell 156
Reading Command-Line Arguments with the C Shell 160
Making Scripts Executable 160
Marking Files Executable 160
Setting the #! Magic Line 161
Summary 164
Exercises 165
Chapter 5: Scripting with Files 167
Combining Files into Archives 168
Working with File Modes 169
Testing Files with the test Command 171
Dealing with Mac OS X Files 172
The Legacies of NeXT 172
Mobile File Systems and Mac OS X 173
Naming Issues 175
HFS+ Versus UFS: The Mac 0S X Holy War 175
The Terror of the Resource Fork 176
Working with Here Files and Interactive Programs 177
Displaying Messages with Here Files 178
Customizing Here Files 179
Driving Interactive Programs with Here Files 183
Turning Off Variable Substitution 186
Summary 187
Exercises 187

Vii

Contents

Chapter 6: Processing Text with sed 189
Introducing sed 190
sed Versions 190
Installing sed 191

Bootstrap Installation 192
Configuring and Installing sed 193
How sed Works 193
Invoking sed 194
Editing Commands 195
Invoking sed with the -e Flag 196
The -n, --quiet, and --silent Flags 197
sed Errors 199
Selecting Lines to Operate On 199
Address Ranges 200
Address Negation 201
Address Steps 202
Substitution 203
Substitution Flags 204
Using an Alternative String Separator 205
Address Substitution 206
Advanced sed Invocation 207
The comment Command 209
The insert, append, and change Commands 210
Advanced Addressing 211
Regular Expression Addresses 212
Character Class Keywords 215
Regular Expression Address Ranges 216
Combining Line Addresses with regexps 217
Advanced Substitution 217
Referencing Matched regexps with & 218
Back References 219
Hold Space 220
More sed Resources 222
Common One-Line sed Scripts 222
Common sed Commands 224
Less Common sed Commands 224
GNU sed-Specific sed Extensions 225
Summary 226
Exercises 227

Chapter 7: Processing Text with awk 229

What Is awk (Gawk/Mawk/Nawk/Oawk)? 230
Gawk, the GNU awk 230

viii

Contents

What Version Do | Have Installed? 231
Installing gawk 232
How awk Works 234
Invoking awk 234
The print Command 237
Using Field Separators 240
Using the printf Command 241
Using printf Format Modifiers 243
Using the sprintf Command 244
Using Variables in awk 244
User-Defined Variables 245
Built-in Variables 245
Control Statements 248
if Statements 249
Comparison Operators 250
Arithmetic Functions 251
Output Redirection 252
While Loops 253
For Loops 253
Functions 254
Resources 255
Summary 256
Exercises 256
Chapter 8: Creating Command Pipelines 257
Working with Standard Input and Output 257
Redirecting Standard Input and Output 258
Redirecting Standard Error 259
Redirecting Both Standard Output and Standard Error 260
Appending to Files 261
Truncating Files 262
Sending Output to Nowhere Fast 263
Piping Commands 263
Piping with Unix Commands 264
Creating Pipelines 266
Using tee to Send the Output to More Than One Process 271
Summary 272
Exercises 273
Chapter 9: Controlling Processes 275
Exploring Processes 275
Checking Process IDs 276
Reading the /proc File System 279
Killing Processes 284

Contents

Launching Processes 285
Running Commands in the Foreground 285
Running Commands in the Background 285
Running Commands in Subshells 286
Running Commands with the exec Command 286

Capturing the Output of Processes 287
Using Backticks for Command Substitution 287
Capturing Program Return Codes 295

Summary 296

Exercises 297

Chapter 10: Shell Scripting Functions 299

Defining Functions 299
Adding Names to Blocks of Code 300
Function Declaration Errors 302

Using Functions 303
Declaring before Use 303
Function Files 306
Common Usage Errors 307
Undeclaring Functions 307

Using Arguments with Functions 308

Using Return Codes with Functions 309

Variable Scope: Think Globally, Act Locally 311

Understanding Recursion 314

Summary 316

Exercises 316

Chapter 11: Debugging Shell Scripts 317

Deciphering Error Messages 318
Finding Missing Syntax 319
Finding Syntax Errors 321

Tracking Down Problems with Debugging Techniques 323
Look Backward 323
Look for Obvious Mistakes 324
Look for Weird Things 324
Look for Hidden Assumptions 325
Divide and Conquer 326
Break the Script into Pieces 326
Trace the Execution 327
Get Another Set of Eyes 327

Running Scripts in Debugging Mode 327
Disabling the Shell 328
Displaying the Script Commands 328

Contents

Combining the -n and -v Options 329
Tracing Script Execution 329
Avoiding Errors with Good Scripting 333
Tidy Up Your Scripts 333
Comment Your Scripts 334
Create Informative Error Messages 334
Simplify Yourself Out of the Box 335
Test, Test, and Test Again 335
Summary 335
Exercises 336
Chapter 12: Graphing Data with MRTG 339
Working with MRTG 339
Monitoring Other Data with MRTG 341
Installing MRTG 341
Writing Scripts for MRTG 342
Configuring MRTG 345
Configuring the Global Values 345
Configuring MRTG Targets for Your Scripts 346
Customizing MRTG Output 347
Running MRTG 350
Viewing Your First MRTG Output 351
Configuring cron 352
Maximizing MRTG Performance 353
Monitoring Your Computer with MRTG 353
Graphing Memory Usage 354
Graphing CPU Usage 358
Graphing Disk Usage 361
Monitoring Networks with MRTG 363
Monitoring Applications with MRTG 366
Summary 372
Exercises 373
Chapter 13: Scripting for Administrators 375
Why Write Scripts? 375
Scripting Complicated Commands 376
Troubleshooting Your Systems 379
Removing Minor Annoyances 385
Cleaning Up Data 387
Automating Daily Work 392
Summary 392
Exercises 392

Xi

Contents

Chapter 14: Scripting for the Desktop 395
Scripting Office Applications 395
Scripting the OpenOffice.org Suite 396
Scripting AbiWord 410
Scripting NEdit 411
Scripting for the Desktop on Mac 0S X 411
Open Scripting Architecture 413
AppleScript Basics 414

Mac OS X Terminal Window Settings 425
Scripting Multimedia 432
Scripting the XMMS Music Player 432
Scripting Rhythmbox 433
Scripting the Totem Movie Player 435
Scripting Other Desktop Applications 435
Where to Go from Here 436
Summary 436
Exercises 436
Appendix A: Answers to Exercises 439
Appendix B: Useful Commands 461
Index 493

Xii

Introduction

A shell is a program that takes commands typed by the user and calls the operating system to run those
commands. For example, you may use the shell to enter a command to list the files in a directory, such as
1s, or a command to copy a file, such as cp. A shell acts as a form of wrapper around the operating system,
hence the term shell.

Unix and Linux systems support many different kinds of shells, each with its own command syntax. You
can run a shell window to enter shell commands from a graphical desktop environment.

Shell scripts combine commands together and act similarly to batch files. With a shell and shell scripts,
you can customize your system, automate tedious daily tasks, better perform your work, and get more
out of your computers.

No matter how nice a graphical user interface your system sports, adding the power of a shell can dra-
matically increase the speed and efficiency of what you can do on your computer. Shells provide greater
control over your system and allow you to do some things that simply cannot be done from the graphi-
cal environment. Shells often allow you to perform tasks remotely, which proves useful if you need to do
something to a large number of computers, or computers located at another site.

Furthermore, Apple Computer chose Unix, an inherently scriptable operating system, as the basis for
Mac OS X. In the Macintosh environment, you get the ability to create scripts along with a really neat
desktop user interface.

As many small devices grow in functionality, you'll find shells even on low-end PDAs and handheld
computers.

Many users fear the command line, which does seem kind of retro in this era of graphical user interfaces.
But the immense power of shell scripts makes it worthwhile to learn about the shell and scripting.

This book covers shells, shell scripts, and a vast array of techniques for getting the most out of your sys-
tems with scripts.

Whom This Book Is For

This book is aimed at anyone who wants to get more out of their computer systems. This especially
includes Mac OS X users who want to take advantage of the powerful underpinnings of Mac OS X, and
Linux users who want to learn more about their systems.

Windows users can take advantage of shells and shell scripts to work around some of the brain-dead
features of that operating system.

Introduction

You do not need to have any prior experience writing programs or scripts. Wrox “Beginning” books start
with the basics and lead you through the entire process. If you do happen to have programming experi-
ence, many of the topics will prove easier to pick up.

What Does This Book Cover?

This book covers shells and shell scripting with a special emphasis on the Bourne shell, the most com-
monly available shell. Special features of the C shell, bash, and Korn shells are also covered, but the
emphasis is on scripts that are compatible with the Bourne shell. This will allow your scripts to work on
the largest number of systems.

This book starts with the basics of shells and then covers how to make shell scripts. Special chapters
cover interacting with the operating system and more complicated programming techniques. After read-
ing this book, you should have a thorough grounding in how to create shell scripts, as well as the ability
to find out more, an important task in today’s ever-changing world of technology.

Throughout this book, you'll find a plethora of practical examples. We promise not to show how clever
we are and instead focus on what works.

How This Book Is Structured

Xiv

The first five chapters of the book cover the basics of shell scripting. Chapters 6 to 11 address more
advanced scripting topics, including awk and sed, two commands that are used in a great many scripts.
The final chapters of the book show how to apply scripting to status monitoring, systems administration,
and the desktop.

The following is a summary of the topics covered in each chapter:

Q Chapter 1, Introducing Shells: In this first chapter, you see what a shell is and how shells work.
You discover the great variety of shells as well as how to find the shell on your system. You
learn how to call up shell windows so that you can type in commands. You also learn about the
default shells on Mac OS X, Windows (under Cygwin), Linux, QNX, and other systems.

Q Chapter 2, Introducing Shell Scripts: This chapter extends the discussion of shells to introduce
shell scripts. You find out what a script is, how to create scripts, as well as how to run scripts.
Because scripting requires a text editor, you’ll find a review and recommendation of editors for
Linux, Unix, Windows, and Mac OS X.

Q Chapter 3, Controlling How Scripts Run: This chapter introduces how scripts run, as well as
how you can control which commands in your scripts get executed. You find out how to have
your scripts make decisions and take alternate paths as needed.

Q Chapter 4, Interacting with the Environment: No shell is an island. This chapter covers how
your shells can find out about the surrounding environment. This chapter delves into how to
pass data to a shell script and how to modify the environment. Furthermore, you'll see how the
magic #! line works and you’ll learn how to create executable commands from your scripts.

Introduction

Chapter 5, Scripting with Files: Virtually all modern operating systems allow you to store data
in files. This is important so that most scripts interact with files of some sort. To help with this,
Chapter 5 covers how to create, read, modify, and remove files.

Chapter 6, Processing Text with sed: Sed provides a stream, or batch-mode text editor. Using
sed for text editing would be excruciatingly painful. But, using sed from scripts allows you to
transform files with simple shell commands. This chapter covers how to call on sed’s power
from your scripts.

Chapter 7, Processing Text with awk: Awk is a special tool for working with text. Zillions of
shell scripts use awk for sophisticated parsing and control over text. This chapter introduces
awk and how you can call on awk from your scripts.

Chapter 8, Creating Command Pipelines: Shells and shell scripts come out of the ancient Unix
traditions. These traditions include the quaint notion that each command should perform one
task and one task only. The Unix philosophy includes the ability to combine these building-
block commands into more complex commands. Chapter 8 covers how to create command
pipelines, where the shell sends the output of one command to the input of another.

" ou

Chapter 9, Controlling Processes: Chapter 9 discusses the terms “program,” “process,” and
“process IDs.” It shows how you can query about processes, kill processes, and gather informa-
tion about what is running on your system. This chapter also covers how to call on other pro-
cesses from your scripts and then query how the processes ran, such as whether the processes
succeeded or failed.

Chapter 10, Shell Scripting Functions: As your shell scripts grow in size and complexity, you
can use functions to help simplify your scripts. Functions also make it easier to reuse parts of a
script in other scripts you write. Chapter 10 covers functions as they pertain to shell scripts, how
to create functions, and how to use them.

Chapter 11, Debugging Shell Scripts: Much as you’d like, no script is perfect. Software, all soft-
ware, sports little problems called bugs. Debugging is the art of locating and destroying these
problems. This chapter covers techniques for finding bugs as well as tips to reduce the occur-
rence of bugs before they happen.

Chapter 12, Graphing Data with MRTG: MRTG is a really clever package for showing complex
data sets as graphs. MRTG works especially well for graphing aspects of your computing envi-
ronment such as network throughput, memory resources, and disk usage. Chapter 12 shows
how you can call MRTG from your scripts and use MRTG to help monitor your systems.

Chapter 13, Scripting for Administrators: Chapter 13 extends the discussion in Chapter 12 to
cover more general techniques for administering systems using shell scripts.

Chapter 14, Scripting for the Desktop: Scripts are often associated with server systems only,
but you’d be surprised at how well scripts can work on the desktop. This chapter covers how to
call on your desktop applications from scripts, such as office suites, multimedia applications,
and especially the Mac OS X desktop.

Appendixes: Appendix A contains the answers to chapter exercises. Appendix B covers the
most useful commands available on Unix, Linux, Mac OS X, and Windows (under Cygwin).

XV

Introduction

What Do You Need to Use This Book?

This book covers shell scripting. To try out the examples, you will need the following.

Q Ashell, such as the Bourne shell

QO Text-editing software

Chapter 1 covers the shell requirements in depth and describes how to find the shell on your system. For
Windows users, you should download and install the Cygwin package, also described in Chapter 1.

Chapter 2 covers text-editing software as these packages relate to shells. You'll find a list of editors, as
well as recommendations.

Conventions

To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book:

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q Important words are italicized when first introduced.

Q Keyboard strokes appear like this: Ctrl-A.

Q Code within the text appears in a monospaced typeface, like this: persistence.properties.
Q Code examples are presented in the following way:

Code examples appear in monofont with a gray background.
Q Within code blocks containing both input and output text, input appears in bold font.
Keyboards differ between systems. For example, Windows and Linux systems usually sport a keyboard

with an Enter key. Mac OS X keyboards from Apple Computer label the key Return instead. This book
uses Enter as this is the most common form.

Source Code

As you work through the examples in this book, you may choose either to type all the code manually or
use the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox . com. Once at the site, simply locate the book’s title (either by using the Search box

XVi

Introduction

or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain all
the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-8320-4.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece
of code, we would be very grateful for your feedback. By sending in errata you may save another reader
hours of frustration; at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox. com and locate the title using the Search box or one
of the title lists. Then, on the book’s details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.
Xvii

Introduction

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum emailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

xviii

Introducing Shells

This chapter introduces the shell, obviously the most important component for shell scripting. It
describes the choices among shells, as well as how to find out which shells are available. In mod-
ern graphical desktop environments, it is not always easy to find the shell, but you’d be surprised
at how many systems actually support shells, from Zaurus PDAs to Audrey network appliances to
the beautifully designed Mac OS X systems.

No matter how nice a graphical user interface your system sports, adding the power of a shell
can dramatically increase the speed and efficiency of what you can do on your computer. Shells
provide greater control over your system and allow you to do some things that simply cannot be
done from the graphical environment. Shells often allow you to perform tasks remotely, which is
especially useful if you need to do something to a large number of computers or computers
located at another site.

Even in an environment such as Apple’s Mac OS X, shell scripting is a useful, powerful tool in
anyone’s kit. Apple had the forethought to make it possible to connect shell scripts to the GUI
environment via a number of custom utilities that ship with the OS, so you can link Ul-level
scripts done in AppleScript to the shell environment for more power than either environment
alone would have.

Because shells exist to accept your commands, each shell provides help for entering complicated
commands, a set of sometimes-complicated shortcuts that can speed up your work immensely. These
shortcuts include special editing modes, based on the two traditional text editors, emacs and vi.

In this chapter, I discuss the following:

0 Understanding shells, including a number of different shells with interesting names such
as bash, ksh, and csh.

0 Finding your shell, which is not always easy in a graphical desktop environment.

0 Entering commands into shells, editing those commands, and storing a history of your
commands.

0 Using wildcards in your commands.

Chapter 1

If you're already familiar with the shell, parts of this chapter will likely cover material you already
know. If so, you may want to skim through for anything new and then jump to the next chapter.

What Is a Shell?

A shell is a program that takes commands typed by the user and calls the operating system to run those
commands. The shell interprets your commands. For example, you may use the shell to enter a com-
mand to list the files in a directory, such as 1s, or a command to copy a file, such as cp.

There are a number of different shells, which are introduced later in this chapter.

Here’s a short example to give you a taste of using a shell. Launch a shell window, or access a shell. Type
the following command to list all the files in the current directory:

If you don’t know how to launch a shell window on the desktop or log into a shell, that’s okay. See the
section Determining Which Shell You Are Running for more on how to track down the elusive shell on
your system.

S 1ls
configuration eclipse icon.xpm plugins startup.jar
cpl-v10.html features notice.html readme workspace

In this example, you simply type 1s and press Enter (or Return, depending on your keyboard). The $ is
the shell prompt, which tells you the shell awaits your commands. The remaining lines are the names of
the files in the current directory.

Just going over the basics of running a simple command introduces a lot of complex topics, as shells are
not all that simple. If the following sections don’t make sense, don’t worry. Each topic will be covered in
detail later in this book.

The shell displays its prompt, shown here as $, and then passively awaits your commands. When you
type a command and press Enter (or Return on Mac OS X systems), you are telling the shell to execute
your command.

The shell looks for a program — that is, a file with execute permissions —with the name 1s. The shell
looks at all the directories in your command path. The shell runs the first program found that matches
the name (and the execute permissions) and then displays the results of the program to your screen, as
in the second and third lines in the code example.

The command path is stored in the environment variable named PATH. Read more on environment
variables in Chapter 4.

The way the shell interprets commands and executes programs is fairly complicated. Back when shells
were first created, their developers thought shells were pretty nifty. The fact that you're reading this
book now, more than 30 years later, means those developers were right.

Introducing Shells

Back in the ancient days of computing, computers ran no shell, or the shell, if it existed, was so connected
to the operating system that it was indistinguishable. You can still see the legacy of these single-shell sys-
tems in the MS-DOS shell on Windows.

Don’t worry, I'll show you how to break free of the single-shell monopoly on Windows.

A shell acts as a form of wrapper around the OS, hence the term shell. (Nowadays, with object-oriented
parlance, a shell would be called something like a CommandReadingOperatingSystemDecorator.)

Shells were designed long before graphical interfaces existed. As graphical environments mature, most
users explicitly run shells less and less for their daily work. But a shell can automate some very complex
sequences of commands. In addition, most Linux systems are designed to be updated from typed-in
commands — that is, from a shell. Furthermore, whether you know it or not, a shell often powers many
of the graphical commands users run. Learning the shell can help you better understand your computer.

Why Use Shells?

Unix was the first popular operating system to break free of the single-shell monopoly. In Unix (and
Linux), a shell is simply a program. What makes the shell special is that a shell is the program run when
most users log in. (You can configure which program [shell] gets run.)

As such, the shell fits in well with the Unix philosophy that each command should do one thing and do
it well. Complex commands are then built by combining small commands. In this context, a shell is sim-
ply another command —a command that facilitates combining other commands.

You can use shell scripts to automate administrative tasks, encapsulate complex configuration details,
and get at the full power of the operating system. The ability to combine commands allows you to create
new commands, thereby adding value to your operating system. Furthermore, combining a shell with a
graphical desktop environment allows you to get the best of both worlds. You get all the friendliness of
the graphical user interface and all the power of the command line.

On Unix and Unix-like systems such as Linux, a shell interprets your commands, running one or more
programs for each command you enter. In addition, most shells allow you to group a number of com-
mands in a file, called a shell script. When you run the shell script file, the shell executes the commands
in the script file in order.

For example, you can create a shell script to look for all files that have the text string "abc" in the file
name and then sort those files by the date they were last modified and back up those files that contain
the most recent changes. The same script could send you an email when it finishes its work and also
deliver an affirmation that you are a good person.

Each shell provides a different syntax as to what you can enter. The syntax supported by most shells
includes a lot of support for working with files. For example, you can list all the files that start with an
uppercase A or a lowercase g, using a simple command like the following:

$ 1s [Aal*

Chapter 1

The 1s part tells the shell to launch the command named 1s (which lists file names). The [Aa] * partis
interpreted by the shell and is part of the syntax supported by most shells.

The bracket syntax, [Aal, is considered a reqular expression. Many commands, such as grep, support
reqular expressions, sometimes with a slightly different syntax. See the Working with Wildcards section
for more on regular expressions and wildcards.

What Kind of Shells Are There?

Since there is no monopoly on shells, you are free to run any shell you desire. That’s all well and good,
but choosing a shell without knowing the alternatives isn’t very helpful. The following sections introduce
the main shells.

The Bourne Shell

The original Unix shell is known as sh, short for shell or the Bourne shell, named for Steven Bourne, the
creator of sh. As shells go, sh remains fairly primitive, but it was quite advanced for the 1970s, when it
first appeared (as part of the Seventh Edition Bell Labs Research version of Unix). The Bourne shell has
been considered a standard part of Unix for decades. Thus, sh should be available on almost all systems
that support Unix or Unix-like commands, including Linux, Unix, and Mac OS X systems.

The Bourne shell feature set, therefore, forms the least common denominator when it comes to shells. If
you truly need to write portable shell scripts, stick to only the features supported by sh. (I'll highlight
where I go beyond these features in the examples.)

The basic Bourne shell supports only the most limited command-line editing. You can type characters,
remove characters one at a time with the Backspace key, and press Enter to execute the command. If the
command line gets messed up, you can press Ctrl-C to cancel the whole command. That’s about it. Even
so, the Bourne shell supports variables and scripting, and remains in wide use today, especially for sys-
tem administration scripts.

For many years, the Bourne shell was all that was available for interactive Unix usage. Then along came
the C shell, or csh, the first major alternative to the Bourne shell.

The C Shell

Designed by Bill Joy at the University of California at Berkeley, the C shell was so named because much
of its syntax parallels that of the C programming language, at least according to the official documenta-
tion. Finding similarities is not always that easy, so don’t expect C programming skills to help with the C
shell, unfortunately. What is true, however, is that a great many C programmers use the C shell.

The C shell caught on quickly and became the default shell on Unix systems derived from the Berkeley
Software Distribution, or BSD, flavors of Unix. Among the surviving players today, Solaris, based origi-
nally on BSD Unix and later on System V Unix, has many die-hard C shell users.

Csh added some neat features to the Bourne shell, especially the ability to recall previous commands (and
parts of previous commands) to help create future commands. Because it is very likely you will need to
execute more than one command to perform a particular task, this C shell capability is very useful.

Introducing Shells

The most commonly used special C shell commands include ! ! to execute the previous command again
and ! $ to insert the last argument of the previous command. See the section Entering Commands for
more on these handy shorthand commands.

Note how virtually all shells have sh in their names, such as csh, ksh, bash, and so on. The major excep-
tion is the rc shell, covered later in this chapter.

For many years, the C shell and the Bourne shell were the only games in town. Anyone who used Unix
heavily in the 1980s or early 1990s likely learned the C shell for its superior feature set and command-
line editing capabilities. Most Bourne shell scripts, however, will not run in the C shell because of differ-
ences in syntax.

The C shell was an essential part of the Berkeley, BSD, version of Unix. And the C shell formed one of
the reasons why users wanted to run BSD Unix instead of the official Unix, which came from AT&T at
the time. During this period of rivalry between West Coast Unix (BSD) followers and East Coast Unix
(AT&T) followers, the AT&T folks created an alternative to the C shell called the Korn shell.

The Korn Shell

The Korn shell became one of the main salvos in AT&T’s response to the growing popularity of BSD
Unix. When AT&T developed System V (five) Unix, the developers realized they needed a shell to match
the capabilities of the C shell. (As per software developers everywhere, they chose not to use the freely
licensed C shell that already existed but instead created something new.)

Created by David Korn at AT&T Bell Laboratories, the Korn shell, or ksh, offers the same kind of
enhancements offered by the C shell, with one important difference: The Korn shell is backward compat-
ible with the older Bourne shell syntax. While the C shell created a brand-new syntax, the Korn shell fol-
lows the earlier Bourne shell syntax, extending the syntax as needed. This means that the Korn shell can
run most Bourne shell scripts. The C shell cannot.

You can find out more about the Korn shell at wwuw.kornshell.com.

The Korn shell has been standardized as part of POSIX, the Unix suite of standards, covered later in the
chapter.

The Korn shell ships as a standard part of System V Unix. This means that everyone with a commercial
version of Unix, such as AIX, HP-UX, or Solaris, has the Korn shell (and this is likely the default shell,
too). Users of Berkeley Unix and Linux, however, had no access to the proprietary Korn shell. And that
was a shame because users liked the features of the Korn shell. The proprietary nature of the Korn shell
created a rift. Just about everything in Unix could be made to run on any other version of Unix. But
users of commercial versions of Unix had the Korn shell. Users of free versions of Unix did not because
there was no free alternative for the Korn shell. That meant that Korn shell scripts would not run on the
free versions of Unix. Furthermore, many organizations ran both commercial and free versions of Unix,
adding to the problem of having scripts that run on one system and not on another. The whole idea of
Open Systems, especially promoted by Unix, was that programs could run on any Unix or Unix-like sys-
tem. The Korn shell was one of the first major programs that broke this covenant. The rise of Linux just
made the problem worse because Linux did not run the Korn shell as well, as covered following.

This situation left Unix administrators pulling their hair out because the shells available on different
flavors of Unix acted differently.

Chapter 1

To help with this problem, Eric Gisin wrote a public domain Korn shell, called pdksh, that remains pop-
ular today. Years later, the source code to the official Korn shell was released under an open-source
license. But this all occurred too late to stop the rise of bash.

The Korn shell was king of the shells on proprietary Unix, but that now pales in comparison to the installed
base of Linux. Linux, a Unix work-alike operating system, grew faster than anyone predicted, and Linux
users wanted an advanced shell with features like that of the Korn shell. But Linux users needed a shell
that was freely available under an open-source license. This led to the development of bash.

Where the Korn shell was a form of answer to the success of the C shell, the bash shell can be considered
an answer to the Korn shell.

Bash, the Bourne Again Shell

The bash shell answered a clear need, a need shown by the initial success of the Korn shell. Users
wanted a shell that was compatible with Bourne shell scripts but with advanced features such as com-
mand-line editing. Users also needed a freely available shell, free of proprietary licenses. All of this led
to bash, or the Bourne Again shell, a play on words to link it to the earlier Bourne shell.

Bash offers command-line editing like the Korn shell, file-name completion like the C shell, and a host of
other advanced features. Many users view bash as having the best of the Korn and C shells in one shell.
That’s good because the Korn shell was available only on System V Unix systems. It was not available
on BSD Unix, Linux, or other systems. On these systems, bash filled in the gap left by the lack of a Korn
shell. All this occurred as Linux grew at a spectacular rate, often at the expense of Unix systems. This led
to the situation today, where there are far more bash users than Korn shell users.

Years later, the Korn shell sources were released under an open-source license, but it was too late. Bash
rules the roost now. Bash is by far the most popular shell and forms the default shell on Linux and Mac
OS X systems. The examples in this book focus on the Bourne shell with the extensions provided by bash.

Be aware: Linux and Mac OS X systems actually use the bash (Bourne Again) shell as
the default shell. Bash then masquerades as sh, the Bourne shell. But on standards-
compliant Unix systems such as Solaris, from Sun Microsystems, the sh command is
supposed to be the Korn shell, ksh (covered following). This can lead to a conflict,
unless —and this is very important—you stick to just the older Bourne shell features
supported by both bash and ksh. Another “gotcha” for Mac OS X is that versions of
that environment prior to 10.3.X used tcsh, or T shell, as the default, which is a csh, or
C shell derivative. Because most shell scripts are assuming sh or an sh derivative, not
checking which shell your script is running in can cause problems. Luckily, there’s an
easy way to deal with this, and you learn about it in the book.

tesh, the T C Shell

Linux systems popularized the T C shell, or tcsh. Tesh extends the traditional csh to add command edit-
ing, file-name completion, and more. For example, tcsh will complete file and directory names when you
press the Tab key (the same key as used in bash). The older C shell did not support this feature.

Introducing Shells

For the most part, tcsh acts as a C shell on steroids. It is mostly backward compatible with the C shell. In
fact, on Linux, tcsh is the program that acts both as csh and tesh, so many Linux C shell users are really
running the enhanced tcsh instead.

Other Shells

Over the years, a number of other shells have appeared, each with a small but devoted following. These
shells include ash, zsh, and rc.

Created by Kenneth Almquist, ash is a Bourne shell-compatible shell that is smaller than bash and runs
certain scripts more accurately than bash. Almquist created ash on NetBSD Unix to better run INN, a pro-
gram for exchanging newsgroup postings with other computers. INN had troubles running under bash.

Ash is the default shell and appears as sh on the Cygwin environment for Windows.

The Z shell, or zsh, focuses on interactive usage. Zsh offers a zillion extended options for working with
wildcards, file listings, directories and paths. These are all very useful on Unix or Linux systems, which
all have a very deep directory hierarchy.

See www.zsh.org for more on the Z shell.

The rc shell comes from the Plan 9 operating system, developed by Bell Laboratories, where Unix origi-
nated. Plan 9 sports some interesting features and takes the Unix philosophy to the next level. With Plan
9, users can log in to any system on the network and see their home directory, regardless of where the
directory is actually stored. A small number of users adopted rc outside of Plan 9.

Graphical Shells

At a time when Unix vendors felt they could compete against Windows in the desktop software arena,
these vendors created a number of graphical extensions to shells, particularly the Korn shell. The Common
Desktop Environment, or CDE, was meant to provide a standard desktop experience for Unix users. CDE
combined elements developed by Hewlett-Packard, Sun, and other Unix workstation vendors. In the end,
however, CDE was too little, too late. It wasn’t until years later, with the development of the Mac OS X
operating system’s Aqua Ul, and the Linux GNOME and KDE desktop software, that Unix systems could
really compete with Windows on the desktop.

Out of the CDE effort, however, came dtksh, short for the desktop Korn shell (many CDE programs

sport names that start with dt). Dtksh is the Korn shell and supports all the standard ksh features. In
addition, you can create windows, menus, dialog boxes, and text-input fields using shell commands
built into dtksh.

Another shell with graphical commands is tksh, which combines the Tk (pronounced tee kay) graphical
toolkit that comes with the Tcl (pronounced tickle) scripting language with the Korn shell. Tksh extends the

Korn shell with graphical commands but otherwise uses the Korn shell syntax in place of the Tcl syntax.

For more on tksh, see wwuw.cs.princeton.edu/~jlk/tksh/.

Chapter 1

The Official POSIX Shell

POSIX, the Portable Operating System Interface for Computer Environments standard, defines a stan-
dard for writing portable applications. This is really a standard for writing portable applications at the
source code level on systems that look similar to Unix. Because many applications depend on a shell
(especially for installation), POSIX also standardizes on a shell — the Korn shell.

The POSIX shell, however, is called sh. This means that a host of slightly different applications all mas-
querade as sh, the venerable Bourne shell:

QO Some Unix systems still include the AT&T-created Bourne shell.

0 Most modern commercial Unix systems, however, include the POSIX shell, which is really ksh
under the covers in a POSIX compatibility mode.

QO On Mac OS X and Linux systems, bash acts as sh.

QO On the Cygwin environment for Windows, as well as NetBSD Unix, ash acts as sh. Each of these
shells can act mostly like the Bourne shell, but all sport some differences. As you can imagine,
this situation can lead to problems when trying to write portable shell scripts.

Note that bash should conform to most of the POSIX 1003.2 standard. The problem occurs, however,
when script writers make assumptions based on whichever shells act as sh for their systems.

To help resolve these problems, you can run bash with the --posix command-line option. This option
tells bash to operate with the POSIX standard default operations instead of the bash-specific operations
where they differ. In other words, this makes bash act more like a POSIX shell. See the Command-Line
Options section for more on how to use command-line options.

Default Shells

The default shell on Linux and Mac OS X is bash, the Bourne Again shell. Bash provides a modern shell
with many features, and it runs on many, many systems where it is not the default. Hence, I use bash as
the primary shell for the examples throughout this book.

Barring extra configuration, the default shells for many systems appear in the following table.

Operating System Default Shell

Mac OS X bash (Mac OS X 10.3, earlier versions use tcsh)
Solaris, HP-UX, System V Unix ksh

QNX 6 ksh

Zaurus PDA bash

Yopy PDA bash

Windows with Cygwin bash

Windows with Services for Unix ksh (not a full version, however)

If your system does not have bash, you can download the sources from www.gnu.org/software/bashy.

Introducing Shells

Choosing a Shell

Unless you are the administrator or have administrator permissions, you are stuck with the default shell
as defined by your administrator. That’s usually okay because modern shells are all pretty good, and you
may need to deal with assumptions regarding shells as you work. For example, when administrators
assume everyone runs the Korn shell, they may set up parts of the environment that break in strange
ways for users of other shells, particularly users of the C shells. This often happens with commands that
are not specifically shell scripts. And these types of problems can be really hard to track down.

So your best bet is to stick with the default shell as defined by your administrator. If you are the admin-
istrator or you have administrator permissions, you can change your startup shell to run the shell you
prefer.

If you are free to choose but you don’t have any particular requirements or a history with a particular
shell, choose bash if it is available. Bash is under active development and forms the default shell on a
great many systems.

If you don’t have bash available, go with the Korn shell if it is available. (This is sad to say, coming from
a die-hard C shell user.) The C shell was the best thing around in its day, but bash is clearly the most-
used shell today. Bash has most of the good features of the C shell, too.

If you do have a history with a particular shell, go ahead and use that shell, as you will be the most pro-
ductive with a familiar shell.

Changing Your Default Shell

The chsh command, if available, allows you to change your default, or login, shell. This is handy if you
just hate your current shell and your administrator is not open to changing your shell for you. The chsh
command, short for change shell, allows you to modify the system environment for your login. The basic
syntax follows:

chsh username new_default_shell
For example, to change user ericfj to use bash, run the chsh command as follows:

S chsh ericfj /bin/bash
Note that you need to enter the full path to the shell. The chsh command will likely require you to type in
your password, so that only you and the administrator can change your default shell. The new login shell
will be available for use the next time you log in. (You can log out and log back in to run the new shell.)
On Linux, you need a slightly different syntax:

chsh -s new default_shell username

On BSD Unix, use the chpass command, which requires the following syntax:

chpass -s new _default_shell username

Chapter 1

10

On Mac OS X, there are a number of ways to change your shell, depending on your setup. First, you can
run either chpass or chsh (they are both the same program), using the chpass syntax listed previously.
The second and more common way is to change the settings in the Terminal application. (You talk to the
shell in Mac OS X via Terminal, which is just a, well, terminal to the shell environment in Mac OS X.)
From the /Applications/Utilities directory open the Terminal application. From the Application menu,
select Preferences, or press 8-, (the Command key plus the comma key). The Terminal Preferences win-
dow opens. Select the “Execute this command (specify complete path):” button, and enter the full path
to that shell, such as /bin/tcsh (as shown in Figure 1-1). Note that this method changes the default shell
that Terminal uses for every physical user on that system, so if there’s more than one person and you
change the shell, you may have some irate people on your hands.

Terminal Preferences

When creating a new Terminal window:

*) Execute the default login shell using fusr/bin/login
) Execute this command (specify complete path):
{bin/bash

e |

Declare terminal type ($3TERM) as: xterm-color

"1 Open a saved .term file when Terminal starts:

£ 1 . X
(Select...)

Figure 1-1

Another way to change the shell for a specific user is to use NetInfo Manager, which is the GUI interface
to the directory system Mac OS X uses to store user account settings. From the /Applications/Utilities/
directory, open up NetInfo Manager. NetInfo Manager displays a hierarchy of settings in a columnar
fashion; the root is on the left, and the current branch opens to the right. In the middle column, click the
“users” entry, and find your short username (in our example, “admin”) Notice that when you click
admin, the bottom window displays various settings for that user, as shown in Figure 1-2.

To make changes, click the “Click the lock to make changes” button. You must be an admin user to
authenticate; otherwise, you won’t be allowed to change your shell here. After you’'ve authenticated,
scroll down in the settings area of the window until you see the “shell” entry. Double-click the path for
the current default shell in the Value(s) column, and enter the full path to the new default shell, as in
Figure 1-3.

Introducing Shells

After you've entered the new shell path, hit 8-S to save. You'll be asked if you really want to do this.

non local @ localhost - |
©@ <
(n Parent Find
/ USEers
/ aliases ™ g admin "
config » appserver L
groups L cyrus P
machines . daemon L
mounts L5 eppc L
networks L Ip L
presets_computer_lists & mailman P
presets_groups L5 mysql b
presets_users 2 nobody P
printers s postfix E
protocols L qtss K
rpes ™ i) root L
services "4 lsmmsp b
USErs P 1Y ||sshd L
(4>
Property Valuels)
hint
sharedDir
_writers_pa
authentica Server,0x000000000000C
name
admin
admin
£
@ Click the lock to make changes.
N

Figure 1-2

Click “Update this copy” to save your changes, and quit NetInfo Manager. You should see your change
reflected in Terminal immediately, but if not, log out and log back into your account, and you'll see the

changes.

11

Chapter 1

D86 local @ localhost - | (=]
'_.-'-_'% Fa = £
E BT R ©
New Duplicate Delete 1 Find
! users
/ » ‘config L admin >
groups g ¢y appserver F
machines » cyrus |
mounts ! daemon L
networks ! eppc)
presets_computer_lists Ip I
presets_groups ! mailman)
Presers_users f mysal)
printers L nobody J
protocols ! postfix |
rpcs L qtss P
services ™14 | raot L
UsErs M CmMmen F 3
4 _ j 4 »
Property Valu e[s”} |
realname Administrator
uid 501
shell |,fhin,fhash
generateduid 7B12B5BE-08DE-11D9-B9E4-000A277A:
naprivs -2147483393 [
gid 20
_writers_tim_password admin
picture JLibrary/User Pictures/Animals (Butterfly.t |
_writers_realname v
—
é/ Click the lock to prevent further changes.

Figure 1-3

Running a Shell from Within Another Shell

12

Shells are simply programs. Because a shell can run programs, nothing is stopping you from running
a shell from within a shell, or a shell within a shell within a shell, and so on. To do this, simply type in
the shell command you want to run. For example, if your default shell is bash, but you want to try the
features of tesh, simply type in tesh and try it out:

$ tcsh
S

The tesh program responds with a prompt, ready for your commands. Remember now, however, that
you are running a different shell, so the syntax of some commands may differ.

Introducing Shells

Finding Out More About the Shell

Use the man command to display more information, a lot more information, on your shell. For example,
to learn about the bash shell, use the following command:

$ man bash

You should see copious output.

How Do Shells Fit into a Graphical
Environment?

The shell, combined with the cryptic commands it supports, such as cp and rm, helped form the impres-
sion that Unix and Linux systems are hard to use. Today, just about every system offers a graphical desk-
top environment that makes using the computer a lot easier.

As the various desktop environments mature, users tend to run shells less and less. Some users may even
end up believing that there is no such thing as a shell. For example, you can work with a Macintosh system
for a long time and never need a shell. That’s good. The shell just gives you extra power and flexibility.

The problem of how to embed a shell into a graphical environment was solved years ago with the Unix
xterm application and the Macintosh Programmer’s Workshop (MPW). In both these cases, the shell
runs inside a window on the normal desktop display. The problem was, prior to Mac OS X, the OS didn’t
have the concept of a shell, so it was always a bit of a kludge. Now that Mac OS X is based on BSD Unix,
you now have the full abilities of a true Unix shell environment available, a great improvement over
earlier attempts. This provides a very powerful tool. Shell windows typically add scroll bars, control
over fonts and font sizes, and, most important, the ability to copy and paste text. Place two or more shell
windows on your display, and you have a powerful environment because you can run commands in one
window and then select text for placement into commands entered in another.

The image in Figure 1-4 shows a typical power-user Linux desktop with multiple shell windows.

Because a great many shell commands work on files, you can often use a graphical file manager to elimi-
nate the need for a shell. Graphical file manager programs, however, don’t work well for those tasks that
shells work best at. For example, if you want to change the case of all the file names in a directory from
uppercase to lowercase, shells work far better than file managers. Also, if you want to copy those files
that have been modified after a certain date, for a backup perhaps, shells again work better than file
managers.

13

Chapter 1

¥ bobmarley® kirkwall:~ SR © bobmarley® kirkwall:- sjog%
File Edit View Terminal Tabs Help File Edit View Terminal Tabs Help
: [bobnarleyokirkwall bobnarley]s [] [bobmarley@kirkwall bobmarley]s [] [+]

LaGTTIIETS

‘e

sobmalsy’s o e

=

ST ETE

®©

Trish

|+ | . bobmarley® kirkwall:~

File Edit View Terminal Tabs Help
[bobmarleyakirkwall bobmarley1s I [#]

[]

]

APE& 8 B o s " 9 @ sioeu

Figure 1-4

Once you determine you need a shell, the next step is to find it.

In modern desktop environments, shells run inside special shell windows that hold a shell-based com-
mand line. Most shell windows also support scroll bars that allow you to review the output of past
commands.

If the shell is the first program run when you log in to a system, it seems odd to have to find the shell.
But on today’s modern operating systems, the desktop environments often hide the shell on purpose.
The intent is not to stop you from using the shell; instead, the goal is to reduce the level of fear of users
taught that Unix-like systems are difficult to use.

If you are logging in using the telnet or ssh programs, then the first program you see will likely be a
shell. Problem solved. You've found your shell. If instead you run a graphical desktop environment, you
may need to look around. The following sections describe how to start a shell window for a number of
Unix and Unix-like systems, starting with Linux.

14

Introducing Shells

Running Shells on Linux

Linux systems typically run one of two major desktop environments, GNOME or KDE. Both the
GNOME and KDE environments, however, try to appear somewhat like Windows, with the Linux
equivalent of the Windows Start menu usually appearing in the lower-left corner.

On a Fedora or Red Hat Linux system with a GNOME or KDE desktop, choose Terminal from the
System Tools menu. With the default KDE environment, choose Terminal from the System menu.

Your Linux system may sport slightly different menus, but the concept is the same. Nowadays, the shell
is considered a tool or utility and will be available on a sub-menu under the main system menu.

These applications are called terminals or terminal windows because they create a pseudo, or virtual,
terminal, which mimics the behavior of an old-fashioned ASCII terminal. To the underlying operating
system, these actually are terminals, albeit software-only terminals.

Running the GNOME Shell Window

Figure 1-5 shows the gnome-terminal window, which provides the default shell under the GNOME
desktop. Choose Terminal from the System Tools menu to launch this program. (The KDE terminal
window looks similar to the gnome-terminal window, as covered in the following section.)

v ' bobmarley@ kirkwall;~

FEile Edit View Terminal Tabs Help

[bobmarley@kirkwall bobmarley]$ uname -a IZI
Linux kirkwall 2.6.5-1.358 #1 Sat May & 09:04:50 EDT 2004 i686 athlon i386 GNU/Linux
[bobmarley@kirkwall bobmarley]$ uname -1

2.6.5-1.358

[bobmarley@kirkwall bobmarley]$ uname -p

athlon

[bobmarley@kirkwall bobmarley]$ uname -o

GNU/Linux

[bobmarley@kirkwall bobmarley]$

Figure 1-5

15

Chapter 1

The first thing you should notice about the gnome-terminal window is the menu bar, which spans the
top of the window. The menus on this menu bar allow you to customize the terminal window. For exam-
ple, you can control the size of the text from the View menu.

The second thing to notice is the very handy scroll bar along the side, which allows you to scroll through
the output. For example, if you list all the files in a large directory, the listing will scroll because there are
likely more file names to display than will fit within the window.

The third thing to notice is the shell prompt, usually ending with a $ character, which shows the shell
running inside the window awaits your commands. The gnome-terminal window will launch your
default shell, usually bash. (As with most things, you can configure this in the profile settings within the
gnome-terminal window:.)

To configure the gnome-terminal window, select Edit &> Current Profile. You can define the command
launched in the shell window, the text size, text fonts, colors, and other details such as how many lines
to save in the scroll buffer.

The other shell windows on Linux all appear very similar to the gnome-terminal window. There’s not
much you can do with a shell window, anyway.

Running the KDE Shell Window

The KDE shell window, called konsole, looks and feels very similar to the gnome-terminal window. The
konsole application offers a comparable set of features to the GNOME offering. The konsole program
extends what the gnome-terminal offers, however, with greater support for multiple sessions.

Each session is really a separate instance of the shell running. By default, sessions appear in separate
tabs within the konsole window. (The gnome-terminal also supports multiple sessions, each in its own
tab.) You can click the tabs to switch to additional shells.

Another excellent feature of the konsole application is support for bookmarks. Unlike web pages, konsole
allows you to bookmark directories. Choose the Add Bookmark choice from the Bookmarks menu to store
the current directory as a bookmark. You can then select the bookmark directory from the Bookmarks
menu to jump immediately to that directory. The konsole application does this by issuing a cd command
to change to the bookmarked directory.

The KDE konsole window uses Shift-Ins (or Insert) to paste, while the gnome-terminal window uses
Shift-Ctrl-V. These shortcut differences can make it difficult to go back and forth between terminal win-
dows. It is usually better to stick with one type of terminal window.

Active Select and Paste

16

One thing that may confuse people used to Macintosh or Windows systems is the active select and paste
model used by the X Window System. The X Window System, or X, provides the low-level graphics on
Linux and Unix systems. (You can also run X on Mac OS X or Windows systems, in emulation.)

With X, selected text is instantly available for other programs to use. You can use the left mouse button
to select text and then paste that text into a different window. Typically, the middle mouse button of a
three-button mouse pastes the currently selected text. (Press the two buttons simultaneously on a two-
button mouse to emulate the missing middle button.)

Introducing Shells

This may seem like the traditional copy and paste model, but you get to skip the copy step. With the X
Window System'’s active select and paste model, you can simply select and paste.

In addition, X supports the normal copy and paste model with a clipboard. You can place some text in
the clipboard while selecting other text for active pasting.

A long time ago in a galaxy far, far away, you could be really productive using active select and paste with
the vi text editor in multiple shell windows. Nowadays, most users run graphical text editors, covered in
Chapter 2, instead of vi.

Running Shells on Mac 0S X

On Mac OS X, you'll find a shell window available by using the Terminal application, located in the
/Applications/Utilities/ folder. It defaults to a base terminal window for your default shell. Because Mac
OS X ships with a single-button mouse, there are some oddities that you don’t find in other systems. With
a single-button mouse, or the trackpad on a portable, to emulate the second button, you Control-click
(press the Control key and click the mouse). This brings up a contextual menu that allows you to make
use of features like pasting the selected text without going to the keyboard, as shown in Figure 1-6.

If you find Ctrl-clicking annoying, just replace the standard Mac mouse with a mouse or trackball that
you prefer. Without any added software, Mac OS X supports two buttons and a scroll wheel. Most of
the better mice from Microsoft or Kensington come with improved drivers so you can program the extra
buttons for specific tasks.

ene Terminal — tcsh — tesh (ttypl) — 80x24
See pwd_mkdb({8) for on explanation of the impoct of setting the 4
PW_SCAN_EIG_IDS environment wariahble. v
FILES
seto/master.pazswd the user databaze
seto/posswd a Version 7 format possword file
seto/chpass. KRRy temporary copy of the password file
fetolshells the list of oppyousdtskslls
Copy #C
SEE ALS0
Paste HY
finger{ly, login{l}, passwd{l}, getu %
posswd(8), pud_mkdb(8), vipw(a) Paste Selection {3V
) Paste Escaped Text "3V
and Robert Morris and Ken Thompson, | select All a8 A
BUGS
User information should {ond eventua Clear Scrollback #K
HISTORY Send Break (Ctrl-c) 8. m
The chpass utility appeared in 4.3B3 Send Hard Reset THR
'Y
B3 Decenber 3 Send Reset #R !
[ourora:~] jwelchi [Window Setti
1 Iinaow >ettings... I—“

Figure 1-6

If you want to use the Xterm application to get to your shell environment under OS X, you can do that
with Apple’s X11 application (in Mac OS X 10.3 or later, it’s a custom install), or by using XFree86.
(X11 is Apple’s implementation of XFree86, so they're essentially the same thing.) X11 lives in the
/Applications/Utilities/ folder, and when you start it, it opens an xterm window for you by default.
To emulate the second and third buttons, use Option-click and Command-click.

17

Chapter 1

Running Shells on Unix Systems

On Unix systems under the CDE, or Common Desktop Environment, click the terminal icon that
appears on the taskbar at the bottom of the screen. You'll see a dtterm window.

The dtterm program appears similar to that of the gnome-terminal or konsole window, although dtterm
supports fewer options from the menu bar.

With the GNOME desktop environment making inroads into commercial Unix systems, especially Sun’s
Solaris, CDE is being used less and less.

Running Shells on Windows — Isn’t command.com Enough?

MS-DOS provides a primitive shell called command.com, or cmd.exe, depending on the version of
Windows. Command.com is the old name for the program that provided the MS-DOS command line
on PCs. On modern Windows systems, you can still see the legacy of command.com with the MS-DOS
Prompt window, the Windows equivalent of a shell window.

This shell, however, doesn’t offer the features of modern Unix and Linux shells, especially when it comes
to shell scripting. Because of this, if you want to write shell scripts on Windows, you need to install
another shell.

Installing Cygwin on Windows

18

Cygwin is the name for a set of packages that provide a surprisingly large number of Unix-like utilities
for Windows systems. With Cygwin installed, you can make your Windows system act very much like a
Unix system, at least from a user perspective.

For shells, Cygwin includes ash, bash, tcsh, zsh, and pdksh. The default shell is bash, which you should
use for the examples in this book. Download the Cygwin package from www.cygwin.com.

By default, Cygwin installs in C: \cygwin, which becomes the virtual root directory
of the Cygwin environment. When you run the Cygwin bash shell, for example, the
shell starts in your user home directory, from the perspective of Cygwin. This direc-
tory is /home/username, such as /home/ericfj for a user named ericfj. In reality, how-
ever, this directory is located in C:\cygwin\home\ericfj. From the bash shell,
however, this appears as /home/ericfj. You need to pay attention to this if you work
with files.

To launch a Cygwin shell, use the Windows Start menu.

Because the Cygwin package includes a number of shells, as well as a plethora of commands, this is
probably the best shell package for Windows users. But you may decide to instead install Microsoft’s
Windows Services for UNIX.

Introducing Shells

Installing the Korn Shell on Windows

Microsoft’s Windows Services for UNIX provide a number of Unix commands on Windows. For shells,
this package offers both the Korn shell and the C shell but not bash. Furthermore, the Korn shell as part
of this package is not a complete Korn shell. Because of this, you are better off, from a shell-scripting
perspective, to load Cygwin instead.

For more on the Microsoft’s Windows Services for UNIX, see http://www.microsoft.com/windows

/sfu/default.asp.

Running Shells on PDAs and Other Systems

In addition to running shells on desktop and server systems, you can also run shells on quite a few small
systems such as PDAs, especially Linux-based PDAs.

On the Yopy PDA, click the Linupy menu (similar to the Windows Start menu), and choose Terminal
from the Utilities menu. The Yopy will start a shell window running bash. On low-resolution PDA dis-
plays such as that on the Yopy, however, you will likely see only part of the width of each line, which
makes entering commands and editing files more difficult.

The latest Zaurus PDAs solve the screen resolution problem by providing a 480 x 640 pixel screen in por-
trait mode and 640 x 480 in landscape mode. In both modes, you can see the entire width of a line.

On the Zaurus, choose Terminal from the Applications menu to launch a shell window. Or click the
Home button to see the application launcher. Click the Applications tab, and select the Terminal icon.
Figure 1-7 shows a bash shell window running on the Zaurus.

With QNX 6.0 on an Audrey Internet appliance, choose Terminal from the main Infinity menu (for those
using the Infinity operating system images).

In most cases, it is not that hard to launch a shell window, regardless of the system you use. As you can
see from these examples, even PDAs and Internet applications sport shell windows, ready for you to

play with.

Once you have a shell available, the next step is to start entering shell commands. Shell commands form
the basis of shell scripting.

19

Chapter 1

Fort oy o0 {3 J [[bs v |

bash-2,05% uname —a
Lirux zaurus 2,4,18-rnk7-praZ-enbedix #1 Sat. 14 Feb 2004 17:11:1E +0000 arm.St
el unknown

bash-2, 055 [l

3 ERoch B 251PM

Figure 1-7

Entering Commands

20

Shells display a command prompt and then await your commands. The prompt indicates the shell is
ready.

The prompt usually ends with a dollar sign ($), a percent sign (%) for C shell users, or a hash mark (#,
also called a sharp sign) if you are logged in as the root, or super user. Modern shells often come config-

ured to show your username, machine name, and current directory in the prompt.

For example, the following line shows the default tesh prompt for user ericfj on a machine named kirk-
wall, in the user’s bin directory:

[ericfj@kirkwall ~/bin]$

Note that the tilde character, ~, is shorthand for the user’s home directory.

Introducing Shells

Bash, by default, shows a prompt like the following on Linux systems:
[ericfjekirkwall bin]$

Note how bash just displays the current directory name relative to its parent directory. You can really see
the difference when you change to a user’s home directory. The following shows a bash prompt for the
user’s home directory:

[ericfj@kirkwall ericfjls
But if you use tcsh, you will see a prompt like the following:
[ericfj@kirkwall ~]$

Prompts are configurable, so your system may differ. In many cases, however, the default prompt is use-
ful enough so that you don’t need to change it. These examples come from a Fedora Core 2 Linux system.

In this book, a dollar sign ($) will act as a shorthand for your shell prompt. While the prompts may dif-
fer, shells all act the same: they patiently await your commands. The examples in this book show $ for
the shell prompt and # for the shell prompt of the root user.

This patience has limits. On some Unix systems, for example, the C shell defaults to a 60-minute auto-
matic logout setting. If you enter no commands for an hour, the shell quits and logs you out. This time
period is also configurable.

Determining Which Shell You Are Running

Once you launch a shell window, the next step is to determine which shell you are running.

Try It Out Which Shell Am | Running?

If you don’t already know what kind of shell it is, try the following command:

S echo $SHELL
/bin/bash

How It Works

The basic format of a shell command follows:
command argumentl argument2 ...

The command part is the name of a command, a program or shell script, or other file that is somehow
marked as an executable command. In this example, echo is the command. Shells on Windows systems,
for example, would look for commands named echo. exe, echo. com, or echo . bat to execute because
Windows uses file-name extensions (.exe, .com, .bat, and so on) to mark files as executable. Linux and
Unix systems, on the other hand, use file permissions to mark files as executable. Shells on Linux and
Unix systems would look for an executable file named echo in this example.

21

Chapter 1

22

Shells look for the commands in directories the shell recognizes as the command path. See Chapter 4 for
more on how to modify your shell’s command path.

Shells expect commands to appear first. After the command, you can pass a number of arguments to the
command. These are values passed directly to the command, which then interprets the arguments as it
sees fit. (There are also command-line options, covered following.)

This example uses the echo command, which displays a line of text, the text you provide. Echo is so
named because it echoes back whatever you provide. This may seem like a very dumb idea for a com-
mand, but echo is surprisingly useful. The echo command allows you to present text to the user or lets
you know details of how a command will run. To use echo, pass the data you want to display as argu-
ments to the echo command.

The example passes $SHELL as an argument to echo. You might expect echo to print out $ SHELL, but the
leading dollar sign informs the shell that this is a special value. In this case, the dollar sign indicates that
SHELL is a shell variable. The shell then expands the command by replacing $ SHELL with the value of
the shell variable named, appropriately enough, SHELL. Shells usually include quite a few shell variables
populated with values about the computing environment, which is why shell variables are often called
environment variables. While you can quibble over the differences, in most respects, shell variables are the
same as environment variables.

On Linux and Unix systems, the SHELL environment variable holds the name — that is, the program
file — of the user’s default shell. In this case, /bin/bash indicates that the shell is bash, running as the
bash command in the directory /bin. Other results include /bin/tcsh for the T C shell and /bin/ksh for
the Korn shell.

Be careful not to depend too much on the paths, such as /bin/bash. On Unix systems,
except for Mac OS X, bash will likely not be installed in /ust/bin. Instead, bash, as
an add-on package, would be installed in /ust/local/bin or some other directory for
commands added at a particular site. This is because bash is not standard equipment
on a Unix system (other than Mac OS X and other versions of BSD Unix). On the flip
side, Unix systems based on System V Unix will likely have the Korn shell installed
as standard equipment. Linux systems, however, will likely not. So you may find
ksh, the Korn shell, in alternate locations on BSD Unix and Linux systems.

Non-Unix or Linux systems may install shells in entirely different locations. For
example, the default shell on the QNX-based Audrey is ksh, but the command is
located in /nto/bin.

It is the shell that expands $SHELL to the value of the user’s default shell. Thus, in this example, the
echo command is passed the argument /bin/bash, which echo dutifully prints back.

Each command interprets its arguments differently, although usually arguments are file or directory
names. Each command may also accept command-line options that control how the command behaves.

Introducing Shells

Command-Line Options

In most cases, a command-line argument provides data for a command to work on, while a command-
line option selects among the command’s many options for how to work on the data. This distinction is
not always clear. In the end, you are at the mercy of whoever wrote the command in the first place. The
options and arguments differ by command and are often strangely named.

Unix, which popularized these concepts and commands, has a long, long history that doesn’t always
make sense. For example, the command that alerts users to newly received email is called biff, after the
name of a dog that barked when the postal carrier brought the mail.

So you should always check the documentation for each command you intend to use to see what
options are supported by the command. The basic format for a command can be expanded to include
the following:

command optionl option2 ... argumentl argument2 ...

Command-line options almost always come first. And command-line options almost always start with a
dash character, -. Newer commands (meaning anytime after the late 1980s) often support options that
start with two dashes, --.

Nowadays, the two-dash and the one-dash folks have mostly come to a détente, where the two-dash
options are used with longer, more understandable, names for the options, and the one-dash options are
used with single-letter options. The two-dash options are also often designed for infrequent use, with
the single-dash short options used for the most common options.

For example, the -v option is often (although not always) used to request verbose output. The long form
of this option is often --verbose. You can choose -v or --verbose as you see fit for those commands
that support both options. In most cases, there will be a long option that corresponds to each single-letter
option.

What you consider verbose and what the creator of the command considers verbose may differ greatly.
Verbose may merely mean outputting a few cryptic hex numbers.

On MS-DOS, a forward slash, /, is used in place of a dash for many command options. This is especially
disconcerting to Unix and Linux users, as these systems use a forward dash to separate directories.
Many MS-DOS commands accept either the slash or dash to precede options.

Try It Out Using Command-Line Options

To see more about how command-line options work, first try the following command without any
options:

S uname
Linux

The uname command, originally short for Unix name, displays information about the operating system.
By default— that is, with no options — uname prints out the kernel name, in this case, Linux.

23

Chapter 1

Now try adding options. For example, the -o option shows the following on Linux:

$ uname -o
GNU/Linux

You can also try the longer options. For example, try the following command:

$ uname --hardware-platform
1386

With Linux on an Intel-architecture system, the hardware platform is listed as i386. The -p option pro-
vides the processor architecture. On Linux, you may see the following:

$ uname -p
athlon

Note that this Linux system uses an AMD processor.
You can combine all the uname options by using -a, or --all. For example:

$ uname --all

Linux kirkwall 2.6.5-1.358 #1 Sat May 8 09:04:50 EDT 2004 1686 athlon
1386 GNU/Linux

$ uname -a

Linux kirkwall 2.6.5-1.358 #1 Sat May 8 09:04:50 EDT 2004 1686 athlon 1386
GNU/Linux

How It Works

The uname command prints out information about a system. This is important if you need to write shell
scripts that can handle different computing environments and operating systems.

The uname command is one of those handy commands that can help your shell scripts determine the
platform the script is running on. But the uname command also shows how not all commands run the
same on all systems.

You can determine what options a command supports and, more important, what these options mean by
using the online manuals. The man command displays the online manual entry for a given command.
The basic format follows:

man comman d_name
For example:

$ man uname
UNAME (1) User Commands UNAME (1)

NAME
uname - print system information

SYNOPSIS
uname [OPTION]...

24

Introducing Shells

DESCRIPTION
Print certain system information. With no OPTION, same as -s.

-a, --all
print all information, in the following order:

-8, --kernel-name
print the kernel name

-n, --nodename
print the network node hostname

-r, --kernel-release
print the kernel release

The man command displays the manual entries one screenful at a time, using the more command. (See
Chapter 8 for details on how to create command pipelines using the more and less commands.) You
can use the man command to determine the available command-line options.

The man command is your friend. This is one of the best commands on Unix and Linux systems and
can tell you a lot about your system.

To show how Unix and Linux commands differ, you can try the uname command on another system,
such as Mac OS X.

Try It Out Using Command-Line Options on Mac OS X

On a Mac OS X system, you'll see the following response for the uname command:

S uname
Darwin

Darwin is the name of the Mac OS X version of BSD Unix. The -p option tells the uname command to
output the processor type. On a Mac OS X PowerPC system, you will see the following;:

S uname -p
powerpc

How It Works

The uname command performs the same function on Mac OS X as on Linux or Unix systems. But the
uname command differs in the support of command-line options. The Mac OS X uname command, for
example, does not support the --all option, as it just prints out an illegal-option message. Mac OS X
does support the -a option, however:

S uname --all

uname: illegal option - 1
usage: uname [-amnprsv]

S uname -a

25

Chapter 1

Darwin Eric-Foster-Johnsons-Computer.local 7.5.0 Darwin Kernel Version 7.5.0: Thu
Aug 5 19:26:16 PDT 2004; root:xnu/xnu-517.7.21.0bj~3/RELEASE_PPC Power Macintosh
powerpc

The Mac OS X uname command also doesn’t support the -o or --hardware-platform options. This is
very important. Not all Unix and Unix work-alike systems support the same command-line options.

Combining Options

The normal format for command-line options is to precede the option letter with a dash, as in the follow-
ing command:

S uname -r
2.6.5-1.358

You can typically provide more than one option. For example:

$ uname -r -p
2.6.5-1.358 athlon

Most Unix and Linux commands also support combining a number of options with just a single dash.
For example:

$ uname -rp
2.6.5-1.358 athlon

This example combines the -r and the -p option but places both on the command line with a single
dash, as -rp. This command has the same effect as if the options were presented separately.

Strange Options
As mentioned earlier, most Unix and Linux commands support options starting with a single dash.
Some newer commands, especially those that come from the GNU project (www.gnu.org), support
longer-named options starting with two dashes.
A few options don’t use either the single or double dash. The dd command, for example, supports a very
different command-line option format. With dd (short for data dumper), the options take the following
format:

dd optionl=valuel option2=value2 ...

For example:

$ dd if=backup.iso of=/dev/tape bs=20b

The dd, cpio, and tar commands, all related to backups (at least originally), take radically different
command-line options and syntax. This is just one of the quirks with Unix and its long history.

26

Introducing Shells

See the online manual entry for dd for more details. Just remember that Unix and Linux commands are
not all consistent. You should look up the commands you need to use in the online manuals.

With the ability to create long, complex command lines, it becomes essential that you be able to edit the
command line to create these commands. That is where a number of shell features come in handy.

Command Editing

The original command-line editing feature was essentially just the Backspace key. You could delete from
the end and retype commands. Pressing Ctrl-C cancels the entire command. This is useful if your com-
mand is so messed up, it is no longer worth it to fix. Since those early days, shells have advanced quite
far, and now most offer a plethora of features to help edit complex commands.

The original Bourne shell supports only Backspace and Ctrl-C editing of commands. But since the C
shell, all new shells have supported ways to help edit commands. The facilities shells offer include the
ability to repeat previous commands, or parts of previous commands, to recall commands from a history
of commands and the ability to use real text editors to edit commands.

Unfortunately, command editing also brings out the differences between shells. The
format and syntax differ greatly between shells.

Command Substitution

Most Unix and Linux commands deal with files and directories. Furthermore, the file system supports
a deep hierarchy of directories, something that comes from the rich command sets on Unix and Linux,
which leads to long, complicated commands. Type in a directory name incorrectly and you may wipe
out crucial data, miss an important backup, or inadvertently damage your system.

One thing shell designers noticed right away was that commands usually occur in a sequence. That is,
you will typically enter a number of commands, all of which repeat parts of the previous commands. For
example, you may enter a number of commands that work within a given directory. This can be as sim-
ple as copying a number of files to the same directory or changing the permissions of a number of files
or directories.

To help with this, shells offer a number of ways to repeat parts or all of previous commands.

Repeating Previous Commands

The C shell introduced the double-exclamation mark syntax, ! !. This command repeats the previous
command in its entirety. Now, why in the world would anyone want to repeat a command that just ran?
Didn’t the command already do its work? Actually, not always. Trying a command again after an error is
one of the most common reasons for repetition. Other reasons you may want to repeat a previous com-
mand include the following;:

27

Chapter 1

Q To check the status of a system or application: For example, if users report problems with an
Oracle database, you may want to issue a command to check its status. If Oracle appears to be
down, you may want to restart Oracle in another shell window and then repeat the command to
check the status of Oracle until you verify that the database is running again.

Q To rebuild a software application, especially after modifying files: Software developers do
this all the time. You may edit a file with a graphical editor and then want to rebuild the soft-
ware to see if you have fixed a problem or that everything is working properly. (See the Tools to
Edit Shell Scripts section in Chapter 2 for more on graphical text editors.)

Attempting the same thing over and over again but expecting different results is considered a sign of
insanity.

Try It Out Repeating Commands with !!

With the C shell, T C shell, and the Bourne Again shell, use the ! ! syntax to repeat the previous com-
mand. For example:

$ df -k

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3679032 19285536 17% /
/dev/hdal 101086 5943 89924 7% /boot

none 502380 0 502380 0% /dev/shm
/dev/hda5 48592392 21111488 25012520 46% /home2
/dev/sdal 499968 286432 213536 58% /mnt/sd

S 11

df -k

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3678992 19285576 17% /
/dev/hdal 101086 5943 89924 7% /boot

none 502380 0 502380 0% /dev/shm
/dev/hda5 48592392 21111488 25012520 46% /home2
/dev/sdal 499968 286432 213536 58% /mnt/sd

How It Works

28

Shells such as bash, csh, tcsh, or ksh keep track of the previous command, which the ! ! syntax recalls.
The exclamation mark character, !, is often called a bang. So !! is bang, bang.

The ! ' command is interpreted entirely by the shell. You won’t find a command program on disk

named ! !. With bash, tcsh, or csh, ! ! will display the previous command, df -k in this example, and

then execute that command.

The df command prints information on how much disk space remains free (d£ is short for disk free).
The -k option tells df to output in kilobytes rather than 512-byte blocks.

Why check the amount of disk space remaining twice in a row? Because another process may have changed
it (or because you are obsessive). Note how the amount of free space changed for /, or the root file system,

Introducing Shells

between calls. In this case, you have a small amount of additional space. In real life, however, you'll most
often use the df command as a disk fills. This can be especially important when a disk is filling rapidly.

See the section Viewing the Command History for more on repeating previous commands.

For another example, the ping command checks network connectivity to a given machine, represented
by the machine’s hostname or network (IP) address. The name ping comes from the pinging sound of
submarine radar systems. Ping sends a certain type of network packet to another system, which should
then send the packet back.

For example, the following command runs the ping command to a system identified by an IP address:

S ping 192.168.0.4
PING 192.168.0.4 (192.168.0.4) 56(84) bytes of data.

--- 192.168.0.4 ping statistics ---
11 packets transmitted, 0 received, 100% packet loss, time 9998ms

The ping command runs forever unless it encounters a very serious error. In most cases, you need to
terminate ping by pressing Ctrl-C. When you press Ctrl-C, ping displays some statistics, as shown at
the end of the output in the example.

This example shows that you cannot reach the system identified by its IP address 192.168.0.4 (a system
on the local network). This may lead you to check network cables and routers and whether the remote
system is even running.

The ping command is not a full network testing application. If ping works, you know your system can
reach the remote system on the network. If ping doesn’t work, however, you cannot always assume the
network is down. Many network firewalls disable ping messages. Or, the remote system may not run
the process that responds to pings.

A better means to test network connectivity is usually trying to connect to the remote application you
are interested in, such as a remote Web servet, file server, database, or other application.

Once you think the network link is repaired, you can try the command again. For example:

S uH
ping 192.168.0.4

PING 192.168.0.4 (192.168.0.4) 56(84) bytes of data.

64 bytes from 192.168.0.4: icmp_seqg=0 ttl=64 time=0.069 ms
64 bytes from 192.168.0.4: icmp_seqg=1 ttl=64 time=0.062 ms
64 bytes from 192.168.0.4: icmp_seqg=2 ttl=64 time=0.060 ms
64 bytes from 192.168.0.4: icmp_seqg=3 ttl=64 time=0.059 ms
64 bytes from 192.168.0.4: icmp_seqg=4 ttl=64 time=0.061 ms
64 bytes from 192.168.0.4: icmp_seqg=5 ttl=64 time=0.063 ms
64 bytes from 192.168.0.4: icmp_seqg=6 ttl=64 time=0.060 ms
64 bytes from 192.168.0.4: icmp_seqg=7 ttl=64 time=0.060 ms

--- 192.168.0.4 ping statistics ---
8 packets transmitted, 8 received, 0% packet loss, time 6998ms
rtt min/avg/max/mdev = 0.059/0.061/0.069/0.010 ms, pipe 2

29

Chapter 1

In this case, the ping command succeeded in reaching the other system.

The Korn shell uses the r command instead of ! to repeat the previous command. You must first set up
the command history feature, however. See the section Viewing the Command History for more on com-
mand histories.

Repeating Parts of Previous Commands

In addition to repeating the entire previous command, you can also ask the shell to insert parts of the
previous command in any new command. The most useful feature is the ability to type ! $ in place of the
last item on the previous command.

The !$ syntax does not work on the Korn shell.

Try It Out Replacing the Last Item on the Previous Command

When you put ! $ in a command in the bash, csh, or tesh shell, the shell replaces the ! $ with the last
item, usually the last argument, of the previous command. For example:

$ mkdir web_files

S cp *.html !$

cp *.html web_files
S

How It Works

The shell doesn’t do much with the ! $ because the shell merely replaces the last item from the previous
command, the directory web_files in this example. You can continue using ! $ again and again, but
remember, it repeats only the last item of the most recent command. For example:

S mkdir web_files

S cp *.html !$

cp *.html web_files

$cd !$

cd web_files

$ cp ~/web/external/index.html !$

cp ~/web/external/index.html web_files

cp: cannot create regular file ‘web_files/index.html': No such file or directory

Notice how once you’ve changed directories, the subdirectory name web_files no longer applies,
because you are in that directory. Also, note that the ! $ syntax repeats the last item on the command line
from the previous command. This is not always what you want. For example:

$ file index.html

index.html: HTML document text

$ cat !$ | more

cat index.html | more

<html>

<head>

<title>Near to the Barking Seals</title>

<link rel="stylesheet" type="text/css" href="pconline.css" />
<LINK REL="SHORTCUT ICON" HREF="favicon.ico">

30

Introducing Shells

</head>

<body bgcolor="#FFFFFF">

S tail !$

tail more

tail: cannot open ‘more' for reading: No such file or directory

In this example, the £file command examines the file index.html to try to determine its file type, which
it assumes is HTML text. The cat command prints out the file to the screen, using ! $ to refer to the file
name. The pipe character, |, sends the output of the cat command to the input of the next command,
more. (This is a command pipeline, covered in Chapter 8.) The more command displays one screen at a
time. Use the spacebar to advance to the next screen and the Esc key to quit the more command.

The next command line, tail !$, passes the last item from the previous command to the tail com-
mand. But there’s a problem. The last item of the previous command was not the file name, but instead
the more command. So this command fails (unless you have a file in the current directory named more.

Even with the limitation that you have to pay attention to what the previous command held, the ! $ syn-
tax is one of the most useful features provided by the shell. This feature originated with the C shell and
was also picked up for the bash shell. The Korn shell doesn’t support this feature, unfortunately.

Using the Up and Down Arrows

In addition to using ! ! to repeat the last command and ! $ to repeat the last item from the last command,
you can use the up and down arrows to cycle through the previous command.

You can edit each command that appears, modifying the command. Or you can simply run the command
again.

This is one of the few features that appeared to come from the MS-DOS world and the old doskey pro-
gram. Normally, features in Unix and Linux find their way into Windows and MS-DOS, not the other
way around.

Viewing the Command History

The shell can keep track of more than just the previous command. In fact, you can ask the shell to keep
an entire history of the commands you typed in, as the up and down arrows show.

The command-history feature originated with the C shell. The Korn shell uses a different syntax, and
bash supports both the C shell and the Korn shell syntaxes.

In the C shell, you can enable the command history with a command like the following:
S set history=60
This command tells the C shell to store the 60 previous commands in its history. When the history list

fills, the shell will dump the oldest entry to make room for a new entry. See the section Customizing
Your Account in Chapter 4 for more on setting up the command history when you log in.

31

Chapter 1

Once set up, you can use the history command to view the command history, as shown following:

$ history

1 12:30 echo $history
12:30 history
12:30 pwd
12:30 cd web_files/
12:31 history

U W N

In this example, only a few commands are in the history, all executed at about the same time, 12:30. If the
history is long, you may want to pipe the output to the more or less command.

The history holds a number for each command. You can use the number with the exclamation mark, !,
to repeat that command from the history. For example:

$ 13
pwd
/home2/ericfj/writing/beginning_shell_scripting/web_files

In this case, command number 3 in the history is the pwd command, which prints the current working
directory.

You can also use the exclamation mark with the start of a command in the history to repeat that com-
mand. For example, the previous command, pwd, starts with p. Use the following example as a guide:

$!p
pwd
/home2/ericfj/writing/beginning_shell_scripting/web_files

You don’t have to use the first letter. You can provide one or more characters. Usually providing a num-
ber of characters ensures that you get the right command. In Unix and Linux, for example, the rlogin
command, which logs in to a remote system, and the rm command, which deletes files, both start with 7.
Unless you want to accidentally delete files, you should include a number of characters when running a
command from the history.

The Korn shell supports a command history as well but uses the r command instead of an exclamation
mark. Like the C shell, you may need to set up the history feature first, but set the HISTSIZE value
instead of the C shell’s history:

$ HISTSIZE=60

Once set up, run the £c command (short for fix command) to view the history, with the -1 (ell) option:

S

1 set -o vi
2 fc

3 pwd

4 pwd

5 fc -1

The fc command can also call up an editor.

32

Introducing Shells

When you've selected a command, you can execute that command by number or partial text, similar to
the feature in the C shell. Remember to use the r command in the Korn shell, as ksh does not support
the exclamation-mark syntax.

The bash shell supports most of the C shell and Korn shell history features. Like the C shell, bash sup-
ports the history command for listing the command history. Bash supports the ! |, number, and
Ipartial_txt means to execute previous commands. Like the Korn shell, you can execute the fc -1
command to list the command history. Bash uses the Korn shell HISTSIZE setting to control the size of
the command history. Bash does not support the Korn shell r commands.

The following table shows the main shell history commands.

Shell List Command History Run Last Run by Text Run from Number
bash history, fc -1 i Ipartial_text 'number

csh history I \partial_text 'number

ksh fc-1 r r partial_text r number

tesh history I Ipartial_text 'number

Calling Up an Editor

In addition to executing commands from the history list, you can call up a text editor to edit any particu-
larly complex command. Of course, you have to imagine you live in a parallel universe where only two
text editors exist: vi and emacs. Even so, this can be handy in rare occasions where you face a particularly
troublesome command.

Each shell, excluding csh, supports a set of editing commands. You can turn on the vi or emacs editing
mode with a command, set -o for bash and ksh or bindkey with tcsh.

This style of command editing is not supported by csh. The tcsh shell adds this ability (one of the additional
features tcsh adds to the csh feature set).

The following table shows the commands to control the editing mode.

Shell Set vi Editing Set emacs Editing
bash set -0 vi set -0 emacs

csh not supported not supported
ksh set -0 vi set -0 emacs

tesh bindkey -v bindkey -e

Once you have set up a particular editing style, you can use the various key sequences supported by
these text editors to work on the command line. For example, in emacs mode, Ctrl-A moves the cursor to

33

Chapter 1

the beginning of the line. If you use vi or emacs for text editing, these key combinations should come
naturally to you. If you don’t, you're likely better off using the text editor of your choice to create com-
mand lines or full scripts.

The bash and ksh shells also support the ability to call up a full-screen editor. The £c command, used
previously to list the command history, can call up a text editor. Type fc alone to call up an editor, vi or
emacs, on the previous command. Pass a number to fc to edit the given command in the history, such as
fc 3 to edit command 3 in the history. Pass some text of a previous command, such as fc cp, to edit the
previous command that starts with the given text.

See Chapter 2 for more on vi, emacs, and other text editors.

Using File-Name Completion
File-name completion occurs when the shell offers to help you enter file and directory names. This is one
of the most useful shell features because Unix and Linux systems have many, many directories. To ask
the shell to complete a file name, simply start typing the name and then press Tab to expand the name.
For example, type the following:
$ 1ls /usr/lo
Now press the Tab key. The shell will expand /usr/lo to /usr/local/:
$ 1ls /usr/local/
Now type b, the start of bin, and press the Tab key:
$ 1s /usr/local/b <Tab>
The shell will expand the b to bin:

$ 1s /usr/local/bin

Press Esc-\ in ksh in vi editing mode. Ksh doesn’t support the Tab character for file-name completion.
Bash supports Tab or Esc-/. Note the difference between Esc-/ (bash) and Esc-\ (ksh).

The bash shell also supports a few more features for completing commands. If there is more than one
name the shell can use, press Esc-? to see a list of all the possible files. Type 1s /usr/local/ and then press
Tab. Nothing will happen because there is more than one name the shell can expand. Then press Esc-? to
see all the possible files, as shown in the following example.

$ 1ls /usr/local/ Esc-?
bin games lib man share

etc include libexec sbin src

Use Ctrl-D in the C shell (and tcsh), or Esc-= in the Korn shell to list all the possible names.

34

Introducing Shells

The bash shell goes further. Use Esc-~ to expand a username. Use Esc-$ to expand shell variables (a topic
covered in Chapter 2). The Esc-~ comes from the use of a tilde character, ~, to refer to your home directory.

Working with Wildcards

Shells support a rich set of wildcards to help work with files. A wildcard is an expression that the shell
uses to expand to a number of file names — that is, to all files that match the expression.

Wildcards are often called globs. The use of globs is called globbing.

The * Wildcard

The main wildcard is a star, or asterisk (*), character. (Java programmers sometimes call this a splat.) A
star alone matches anything and nothing, sort of Zen-like. Typically, you need to pair a star with some
other characters to form a more specific expression. For example, * . txt matches all file names ending
with .txt, including all of the following:

.txt

a.txt

a_very_long_name.txt
A_FILE_NAME_WITH_UPPERCASE_LETTERS.txt

The * means that you don’t care what letters there are before the .txt.

Typically, an expression such as * . txt will match all text files. You can refine the wildcard expression
further. For example, a* . txt matches all file names that start with a lowercase letter a and end with .txt.
Again, the * means you don’t care about any letters in between. Using the files from the previous list,

a* . txt would match just the following:

a.txt
a_very_long_name.txt

If you want files that start with an uppercase A or a lowercase 2 and end with .txt, use the expression
[Aa] *. txt. This expression would match the following files:

a.txt
a_very_long_name.txt

A_FILE NAME WITH UPPERCASE_LETTERS.txt

You can use the star more than once — for example, with the expression a*v* . txt. This expression
would match only one file in the example list of files:

a_very_long_name.txt
On MS-DOS, each program has to support wildcards on its own. A few DOS commands, such as DIR,

support a limited number of wildcard expressions. This is very different with Unix and Linux, as the
shell supports the wildcard expressions so each program doesn’t have to.

35

Chapter 1

Try It Out Using Wildcards

You can use the 1s command to get a handle on how wildcard expressions work. For example:

$ 1ls /usr/lib/l*z*.a
/usr/lib/1libbz2.a
/usr/lib/libkudzu.a /usr/lib/libmusicbrainz.a

/usr/lib/libkudzu_loader.a /usr/lib/libz.a
/usr/lib/libzvt.a

How It Works

In this example, the 1s command lists files in the /usr/lib directory, a directory with a lot of files, most
of which start with the lowercase letter I (short for library). In this example, the shell will expand the
wildcard expression to all files with names starting with the lowercase letter [that also have a lowercase
z somewhere in the file name and end with .a (a common file-name extension for libraries).

You can combine expressions, such as the following:

$ 1ls /usr/lib/l1*[Az]*
/usr/lib/1libbz2.a
/usr/lib/1libbz2.so
/usr/lib/1libbz2.s0.1
/usr/lib/1libbz2.50.1.0.2
/usr/1lib/1ibFLAC++.50.2
/usr/lib/1ibFLAC++.50.2.1.2
/usr/1lib/1ibFLAC.s0.4
/usr/1lib/1ibFLAC.s0.4.1.2

/usr/lib/libkudzu_loader.a
/usr/lib/libmusicbrainz.a
/usr/lib/libmusicbrainz.so
/usr/lib/libmusicbrainz.so.2
/usr/lib/libmusicbrainz.so.2.0.1
/usr/1lib/1ibOggFLAC++.s0.0
/usr/1lib/1ibOggFLAC++.50.0.0.4
/usr/1lib/1ibOggFLAC.s0.1

/usr/lib/libkdeinit_kaddprinterwizard.la
/usr/lib/libkdeinit_kaddprinterwizard.so
/usr/lib/libkorganizer_eventviewer.la
/usr/lib/libkorganizer_eventviewer.so.l

/usr/1lib/1ibOggFLAC.s0.1.0.2
/usr/lib/libz.a
/usr/1lib/1libz.so
/usr/lib/libz.so.1

/usr/lib/libkorganizer_eventviewer.so.1.0.0 /usr/lib/libz.so.1.2.1.1
/usr/lib/libkorganizer.la /usr/lib/libzvt.a
/usr/lib/libkorganizer.so.1l /usr/lib/libzvt.so
/usr/lib/libkorganizer.so0.1.0.0 /usr/lib/libzvt.so.2
/usr/lib/libkudzu.a /usr/lib/libzvt.s0.2.2.10

This command lists files in the /usr/lib directory that start with a lowercase I and have an uppercase A
or a lowercase z in their names. Unlike the previous example, this expression does not require that the
file end in .4, or any extension for that matter.

You can use more than two letters inside the square brackets. For example:

$ 1ls /usr/lib/1*[AFLz]*.a

/usr/lib/libBrokenLocale.a /usr/lib/libkudzu_loader.a /usr/lib/1libSDL_mixer.a
/usr/lib/libbz2.a /usr/lib/libmusicbrainz.a /usr/1ib/1ibSDL_net.a
/usr/1lib/1ibIDL-2.a /usr/1lib/1ibSDL.a /usr/lib/1libz.a
/usr/1lib/1ibIDL.a /usr/1lib/1ibSDL_image.a /usr/lib/libzvt.a
/usr/lib/libkudzu.a /usr/lib/1ibSDLmain.a

This example lists all files in /usr/lib that start with /; have an uppercase A, F, L, or lowercase z in their
names; and end with .a.

36

Introducing Shells

The ? Wildcard

While the star expression matches all or nothing, the question-mark expression, ?, matches precisely one
character. You might need the question mark to winnow a long list of files names down to a few.

In addition, the question mark proves very useful when working with dot files. Dot files are files and
directories that start with a period, or dot. In Unix and Linux systems, dot files are normally hidden.
The 1s command, for example, will skip dot files unless you explicitly ask for them.

A big problem with dot files and wildcard expressions is that the current directory has a name of a single
period (.), and the parent of the current directory has a name of two periods (..), which creates a big prob-
lem if you use a wildcard expression such as .* to list all files that start with a dot. The shell can simply
treat all files in the current directory as having a name that begins with ./, which refers to files in the cur-
rent directory, such as ./a.txt. Also, files in the parent directory can be accessed as ../file_name, such as
../atxt.

If you just want to view dot files and directories, use the question-mark syntax. In this case, you can start
with all files with names beginning with a period and having at least two more characters, which elimi-
nates the . and .. directories. For example:

S 1ls .?2%*

On a typical Linux system, you will likely have hundreds of files matching this expression. (Mac OS X
systems, by default, sport far fewer dot files and directories.) When you have a better idea what files are
available, you can further refine expressions. For example:

S 1ls .j*

.jedit:

abbrevs jars modes recent.xml
activity.log Jjars-cache perspective.xml session

dtds jtidy PluginManager .download settings-backup
history macros properties startup

.Jpi_cache:
file Jjar

This command lists all files starting with a .j or all files in a directory with a directory name starting with .;.

Running Commands in the Background

When you run a shell command, the shell waits until the command finishes. You cannot execute any more
commands, at least in that shell, until the command finishes or you kill it (typically by pressing Ctrl-C).
All the operating systems discussed in this book, however, support multitasking. So why doesn’t the
shell? It does. Place an ampersand after a command to run it in the background. For example:

S xmms &

[1] 2280
$

37

Chapter 1

The shell responds with the process ID of the command. (See Chapter 9 for more on processes and how
you can use this process ID.) Next, the shell displays a prompt. It is ready for further commands. When
the background task completes, you'll see an extra message from the shell, such as the following:

[1]+ Done Xmms

Summary

This chapter introduced the shell, the program that accepts your commands on Unix and Unix-like sys-
tems such as Linux. Shells provide the main interface to the underlying operating system. In this chapter
you learned:

Q Evenif you run a graphical environment, you'll find one or more shells under the hood, running
commands. Using these shells gives you access to the full power of your system.

0 Unix and Linux systems offer a plethora of shells. Of these, the most popular shell is bash, the
Bourne Again shell. Bash is the default shell on Linux and the current version of Mac OS X.

Q Each shell offers a number of features to help enter commands, such as command-line editing
and a history of commands.

Q Shells differ in syntax, especially between the C shell and the Korn shell. That’s unfortunate
because it makes using a shell harder if you need to switch systems. Luckily, the bash shell
supports many features of the Korn shell and the C shell. For example, bash supports both the
history and the fc -1 commands to list the command history.

The next chapter takes you from shells to shell scripting.

38

Introducing Shell Scripts

Chapter 1 introduced the shell, a program that patiently awaits your input in the form of com-
mands. These commands range from a simple 1s command to complex command lines made up
of multiple commands. Each shell, such as bash, ksh, or csh, requires a slightly different syntax for
entering commands, although the basics are very similar. Commands often require command-line
options as arguments. All of this can make for complex commands.

Furthermore, you often need to issue a number of commands to accomplish your task. Add this all
together and you can see why Unix has the reputation for being hard to use.

Shell scripts help slice through this mess. Shell scripts can hide the complex command syntax, spe-
cialized command-line options, and the long directory paths needed for many commands. Shell
scripts can gather multiple commands together into one script and thereby act as a single command.

But shells aren’t the only way to write scripts. Specialized scripting languages provide another
means to write scripts for your system. These specialized languages include Perl, Python, and Tcl.

This chapter introduces shell scripts, as well as writing scripts to interact with the user. It
addresses other scripting languages and the tools needed to create your own scripts.

This chapter covers the basics for shell scripts, including;:

0 Writing your first scripts

Choosing a text editor for creating your scripts

Writing scripts to remember strange commands, commands you won't likely remember
Outputting text in your scripts, to provide data to the user

Storing values in variables

0O 000 O

Gathering input from the user

The chapters to follow examine major topics in shell scripting in depth. For now, the best way to
learn is to get started writing scripts.

Chapter 2

What Are Shell Scripts?

A shell script is a text file that contains one or more commands. This seems pretty simple after all this
buildup, but that’s all a script really is. The power of shell scripts, however, lies not in the simplicity of
the concept, but in what you can do with these files.

In a shell script, the shell assumes each line of the text file holds a separate command. These commands
appear for the most part as if you had typed them in at a shell window. (There are a few differences, cov-

ered in the chapters to follow.) For example, this code shows two commands:

df -k
1s

The following Try It Out shows you how to make these two commands into a script and run it. You'll see
a number of very short examples that should provide a quick overview to scripting.

Try It Out Creating a First Script

Type these two commands into a text file. (See the section Tools to Edit Shell Scripts later in this chapter
for more on choices for text editors on various platforms.) Save the file and name it script1l.

You can then run script1 with the sh command:

$ sh scriptl

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 24193540 3712320 19252248 17% /
/dev/hdal 101086 5943 89924 7% /boot

none 502380 0 502380 0% /dev/shm
/dev/hda5 48592392 25468844 20655164 56% /home2
/dev/sdal 499968 286640 213328 58% /mnt/sd

readpipe.tcl scriptl tktext.pl vercompare.py

Chapter 4 shows how to turn a shell script into a command and how to specify the shell to run for the
script.

Running the scriptl script generates the same output as if you had typed the two commands, df and
1s, at the shell prompt.

How It Works

This example passes the name of a file, scriptl, as an argument to the sh command, which is, of
course, the name of the Bourne shell command.

Remember that sh may really be bash or ksh on some systems. This, and the other examples in this chapter,
stick to just the syntax supported by the Bourne shell and so should run on all versions of sh.

The sh command reads in the script1 file one line at a time and executes the commands it encounters.
This is very important to remember: A shell runs every shell script. There is no magic involved. The shell
command, sh, accepts a file name as an argument and executes the named file. Executing the file
involves executing each command in the file one line at a time.

40

Introducing Shell Scripts

The scriptl script file lists two commands, df -k and 1s, both commands introduced in Chapter 1.
The df command lists the amount of disk space free on the available file systems. The 1s command lists
out the files in the current directory. Because of this, the output on your system will differ, based on the
amount of free disk space on your file systems and the files in your directory. The shell outputs the
results of the commands.

Notice that the output of the df command blends right into the output of the 1s command. There is no
separation or any explanation as to what is going on. See the section Outputting Text for more on how to
change this.

You can use wildcards in your shell scripts, too, just as if you were entering commands at the command
line. The following Try It Out shows you how to use wildcards.

Try It Out Using Wildcards in a Script

Enter the following command into a text file, and save the file under the name script2:
1ls /usr/lib/l*z*a
You can then run the command with sh:

S sh script2

/usr/lib/1ibbz2.a /usr/lib/libkudzu_loader.a
/usr/lib/libkdeinit_kaddprinterwizard.la /usr/lib/libmusicbrainz.a
/usr/lib/libkorganizer_eventviewer.la /usr/lib/libz.a
/usr/lib/libkorganizer.la /usr/lib/libzvt.a

/usr/lib/libkudzu.a

How It Works

Just as if you had entered the 1s command at the command line, the asterisks (*) in the argument are
expanded by the shell to a list of those files in the /usr/lib directory that start with [(ell), have a z, and
end with an a. The shell outputs the results of the command.

This is very similar to the wildcard examples in Chapter 1, but this time, you're using the wildcard
expressions inside a script.

You have to be careful, however, with the commands you place in your shell scripts. Interactive com-
mands, especially full-screen commands, don’t tend to work very well. The following Try It Out lets you
experiment with how shell scripts work when you invoke an interactive command.

Try It Out Running an Interactive Command

Enter the following command into a text file and save the file under the name script3:

vi

1ls

41

Chapter 2

Then run the script using the following command:

$ sh script3
readpipe.tcl scriptl script2 script3 tktext.pl vercompare.py

How It Works

Before you see the final output in the preceding example, you will see the entire shell window area get
taken over by the vi command. The shell will pause script3 until the vi command ends.

The vi text editor, discussed in the section Learning vi Modes, will wait until you enter the proper cryp-
tic vi command to exit. If you are not familiar with vi, try : q! —that is, colon, g, bang (exclamation
point). This will exit the vi command. The shell will then execute the next command in the scripts3 file,
1s in this example.

Chapter 9 covers some mechanisms to execute programs and capture the output instead of just waiting
for the program to terminate.

If for some reason you make a mistake in a shell script file, the shell will quit executing the command
and display an error message. In many cases, but not always, an error will stop execution of the whole
script. For example, if you accidentally typed the vi command as vex (because that is what it does to
many), you would have a script like the following:

vex
1s

Enter this text and save the file under the name error. Now you can run the script:
$ sh error
error: line 1: vex: command not found
error readpipe.tcl scriptl script2 script3 tktext.pl vercompare.py

In this example, the shell continued executing the script even after the error on Linux and Mac OS X.

Chapter 11 covers more on handling errors and debugging scripts.

Alternatives to Shells:
Other Scripting Languages

Shells each provide their own scripting language. For example, C shell scripts are not the same as
Bourne shell scripts. You can choose from any shell you have available for scripting (although the
Bourne shell and bash are good shells to stick with, for reasons explained in the last chapter). In addi-
tion, you can create scripts in a number of specialized languages, languages created just for scripting.

42

Introducing Shell Scripts

Note that there are a number of reasons why you should write your scripts for the Bourne shell instead
of the C shell. See www.fags.org/faqs/unix-faq/shell/csh-whynot/ for an interesting list of reasons why
you should avoid the C shell for scripts. The C shell provides a great interactive shell, but you probably
want to use sh or bash to run your scripts. This book covers the C shell, but the main focus remains on
bash and sh.

While this book focuses on shell scripting, you should be aware that there are alternatives. Only you can
determine which language fits your needs.

Some of the reasons to choose one language over another include the following;:

a

Your experience and comfort level: This is similar to the old saying, “If all you have is a hammer,
then all your problems look like nails.” If you know just one scripting language, that language is
the right choice for you. And this is not really a bad idea. There is quite an overlap across script-
ing languages.

The experience and comfort level of others in your organization: If your organization needs
to maintain a number of scripts for a long time, then you’ll want to choose the language that
works best for the rest of the team.

Availability: Some languages may be available, and others may not. For example, if you want
to script a web site, then the two most available languages are PHP and Perl. These are the lan-
guages supported by the majority of web-hosting firms.

What feels right: Some scripting languages support syntaxes that seem, well, downright odd.
This is really a matter of personal preference. But if you really hate the syntax of a language,
you should probably pick another.

What you need to learn: One of the advantages of using the shell for scripting is that you need
to learn the shell as well, just to enter commands. Scripting doesn’t add much more to learn
than what you already need to know about the shell. This is not true for other scripting lan-
guages, where you need to learn an entirely new language.

This book, obviously, focuses on shell scripting. But the following sections should provide a flavor of
other major scripting languages to help you decide. There are literally hundreds of scripting languages,
but three of the most popular are Perl, Python, and Tcl.

Perl

Short for Practical Extraction and Reporting Language, Perl originated as a tool to help system administra-
tors generate reports on system activities. Perl excels at generating reports.

Perl includes many of the powerful text-processing abilities of another language called Awk, covered in
Chapter 7. In addition, thousands of add-on modules provide extra features for Perl, such as networking
and database access.

Per] runs on Windows, Linux, Unix, Mac OS X, and a host of other systems. Furthermore, most web-site
hosting firms support Perl, allowing you to write Perl scripts to process web requests. (These are called
CGI, or common gateway interface, scripts.)

43

Chapter 2

The following shows a Perl script:
#!/usr/bin/perl -w

#

Reads DBM file, printing entries.
#

Usage:

Perl sdbm2.pl database

use SDBM_File;
use Fcntl;

Print format for STDOUT.

format STDOUT=

@<<<<<KLILLLLILLLLKLLLLLLL @BL<<<LL<LLLLLLLLLLLLLLLLLLLLLLLLLLL
Skey, Svalue

format STDOUT_TOP=
Program File Name page @<<<

$%
Sdatabase = SARGVI[O0];

Open DBM database.
Smode = 0666;
$flags = O_RDONLY | binary();

tie(%execs, 'SDBM _File',K S$database, $flags, Smode)
or die
"Can't open \"$database\" due to $!";

Process entries.
while ((Skey,$value) = each(%execs)) {

write;

Close database.
untie (%execs) ;

Subroutine to return
O_BINARY value on Windows,
and nothing if not on Windows.
#
sub binary() {
return O_BINARY if is_windows () ;

44

Introducing Shell Scripts

#

Subroutine to detect if running under
Windows.

#

sub is_windows () {

return $°0 =~ /7~ (MS)?Win/;
}

This script reads through a DBM database, printing out all the values using a Perl report format. Many
of the concepts in this script, including using a hash or sharp sign, #, for comments, come originally
from shell scripting.

Note how the first line uses the # ! format to specify the program to run the script, /usr/bin/perl in
this case. In addition, note how Perl uses double quotes similar to the Bourne shell. When you want to
place double quotes within a double-quoted text string, you need to use a backslash character, \, to
escape the quotes.

Detractors of Perl don't like the large amount of punctuation you see in even the simplest Perl scripts. Perl
uses a $, @, and % to reference variable values, depending on the type of variable. Perl supports many more

special variables, such as $!, than the shell does. This can also make Perl scripts harder to understand.

For more on Perl, see Cross-Platform Perl, Second Edition by Eric Foster-Johnson (Wiley, 2000).

Python

Python, named for the Monty Python comedy troupe, provides a relatively modern scripting language,
at least compared to Perl, Tcl, bash, ksh, and csh. Python supports object-oriented development and in
its most controversial feature, uses program indenting to define blocks of commands.

The following is a sample Python script:
#!/usr/bin/python
Reads in package header, compares to installed package.
Usage:
python vercompare.py rpm_file.rpm
#
import rpm, oS, sSys
def readRpmHeader (ts, filename) :
""" Read an rpm header. """
fd = os.open(filename, os.O_RDONLY)
h = ts.hdrFromFdno (fd)
os.close(fd)

return h

ts = rpm.TransactionSet ()
h = readRpmHeader(ts, sys.argv[1l])

45

Chapter 2

pkg_ds = h.dsOfHeader ()
for inst_h in ts.dbMatch('name', h['name']):
inst_ds = inst_h.dsOfHeader ()

if pkg_ds.EVR() >= inst_ds.EVR():

print "Package file is same or newer, OK to upgrade."
else:

print "Package file is older than installed version."

This Python script compares a software package in RPM format with an RPM file to see which package
should be considered more recent: the installed package or the package file. Most Linux systems use
RPM (short for RPM Package Manager) to manage installed applications.

Python is well known for using whitespace, such as the tab character, to define blocks. While a Bourne
shell script will start an if statement with if and go until the fi statement, Python starts with i f and
then all indented lines underneath form the block. While indenting your scripts can improve readability,
mandating the indenting has been the most controversial feature of Python.

Python is more object-oriented than Perl or shell scripts. Although you can create object-oriented scripts
in any language, if you have experience in Java or C++, then Python is more likely to appeal to you.

Tcl

46

Tcl, pronounced tickle, stands for Tool Command Language. Tcl was created as a lightweight means to add
scripting to applications such as word processors, integrated-circuit testers, and spreadsheets.

Tcl sports a simpler syntax than most shells but even so has proved itself highly useful. The following
script shows how to open a pipe to a program, a topic covered for shell scripting in Chapter 8.

Opening a pipe for reading.

#

Opens command as a pipe for reading.

Pass command without the leading | character.
#

proc read_pipe { command } {

Initialize
set data ""

Start piped command.
set fileid [open |$command r]

if { $fileid != "" } {

Read data.
set data [read S$fileid]

close S$fileid
}

return $data

Introducing Shell Scripts

}

readpipe.tcl

Tcl has been compared by many to appearing as LISP without all the parentheses. If you know LISP, Tcl
will be easy to learn. Tcl works best if you have a C or C++ program for which you want to add script-
ing. The Tcl interpreter can easily be embedded within a C or C++ application, allowing you to run
scripts from within the application.

You will find that Tcl shares many features with shell scripts, including using a dollar sign, $, to refer-
ence variables.

These sample scripts should give you at least a flavor of these different languages, enabling you to better
decide if one of these will meet your needs.

MS-DOS Batch Files

You could consider MS-DOS batch files as another form of scripting language. While you can write
scripts using the MS-DOS batch syntax, even sophisticated scripts, the batch syntax misses a number of
features provided by modern shells such as bash or ksh. For example, DOS does not support file glob-
bing using wildcards. A true shell scripter, therefore, will look disdainfully on MS-DOS batch files as
being inadequate.

Even so, MS-DOS batch files are proof that scripting has shown itself useful in just about every environment.

Once you have selected a scripting environment (hint: pick sh or bash), the next step is to choose a tool for
editing shell scripts. Because shell scripts are merely text files, the tool you need to select is a text editor.

Tools to Edit Shell Scripts

To write shell scripts, you really need two tools:

ad Ashell
a Atexteditor

The main tool you need to edit shell scripts is a text editor. This makes sense because shell scripts are
simply text files, albeit special text files. If you've programmed in any computer language, chances are
you have selected a text editor that meets your needs. By all means, stay with any editor that has proved
productive for your work. There is no reason to change.

If you haven’t selected an editor, or you are running on an operating system you have not used much
before, then the following sections will prove useful.

Using Legacy Editors

Unix, Linux, Mac OS X, and many other operating systems support two legacy editors: emacs and vi.
These are editors that have been around for years and run on nearly every platform you can think of.

47

Chapter 2

As 0f 10.3.5, Mac OS X actually uses vim, or vi Improved. If you're new to vi, this won't really make a
difference, although differences between vi and VIM are noted in this book as needed.

The mere mention of these editors makes some people shudder in fear. They aren’t that bad. Really.
Older than many software developers, these editors sport a certain retro feel. They are useful for three
main reasons:

QO Many people have been trained on these editors. You would be amazed at how muscle memory
works; just watch diehard emacs or vi users as their fingers fly over the keyboard. True diehards
don’t even use the arrow keys or other such modern innovations. These people are most enter-
taining when they use Macintosh systems.

Q These editors are available anywhere. Well, mostly anywhere. There once was an awful Unix
system from Prime Computer that didn’t even have vi, but that is thankfully long gone. You can
run vi on PDAs and supercomputers and most everything in between. Vi used to even be an
example program for the Borland C compiler on DOS.

Q These editors don’t require a graphical environment. If you connect to a remote system via tel-
net or ssh, for example, graphical editors will likely not work. Vi or emacs will, however. For
this reason alone, you may want to learn one of these text editors.

The following sections introduce these two retro text editors. Imagine you are back in the 1970s. Disco is
big. Computers are rare and expensive. Computers actually work. And you have an ASCII terminal as
your only means to access computers.

Delving into emacs

48

If there is a wonder editor that can meet all needs for all people, it is emacs. A product of the GNU pro-
ject, emacs can do anything. Literally anything. That’s because emacs has a built-in LISP program inter-
preter. Originally written by Richard Stallman, leader of the Free Software Foundation and a champion
of free software, emacs provides an extensible text editor with a plethora of features. You can read your
email, browse the news, and even play games, all from within emacs.

Emacs does not ship with all versions of Unix. For example, System V Unix does not include emacs.
You can download emacs from www.gnu.org/software/emacs/emacs.html.

Unlike vi (covered following), emacs is a modeless text editor. So with emacs, you can just type. This
makes editing documents easy. The hard part, however, comes when you want to perform a command
in the editor, such as saving a file. Because emacs is modeless, you need some way to let the emacs pro-
gram know you want to save the file. In modern applications, you’d simply choose Save from the File
menu. Emacs, however, predates the common usage of the mouse and graphical desktops, although
modern versions of emacs work with both.

Like modern desktop applications, emacs uses the equivalent of keyboard shortcuts, but emacs uses
these key combinations for every editor command, and there are hundreds of commands. Thus, for
emacs commands, two keys are important: Control and Meta. Most keyboards show Control as Ctrl,
with Macintosh keyboards showing “control.” The Meta key, however, is nowhere to be found. There
used to be systems that actually showed a Meta key, but for modern keyboards emacs usually maps
Meta to the Alt or Esc key. In most cases, this will be Esc, but you should check the emacs documenta-
tion or online help for your system. (Directions for consulting the emacs documentation and online help
appear later in this section.) On Mac OS X systems, the Meta key maps to the option key, which, on most
Mac keyboards, reads as “option” but may read “alt” instead.

Introducing Shell Scripts

Emacs includes extensive online help available within the application from the Help menu or from help
commands. In the emacs documentation, the key combinations appear as C-x or M-x, short for Ctrl-X
and Alt-X or Esc-X (based on your Meta key mapping). So, for example, the command to save the cur-
rent text is C-x C-s. This translates to Ctrl-X, Ctrl-S. The key combination C-x b for jumping to the next
buffer translates to pressing Ctrl-X and then B. The tables following use the same conventions to get you
used to the emacs way of documenting key combinations.

To get started with emacs, simply type the emacs command:

S emacs
This launches either an emacs window or the text-only version of emacs. Both versions work the same,
but the graphical version provides extra help in the form of menus and scroll bars. You may find emacs
available from the system menus, usually in a programming or tools section, as emacs is most used by

software developers.

Emacs starts up with a handy help screen unless you provide a command-line argument of a file name
or have otherwise told emacs not to display this help.

Figure 2-1 shows the default emacs help screen.

emacs®|ocalhost.localdomain == I[x]

File Edit Options Buffers Tools Help

C@XxOF 5 A BRGDB?

j o

GMU Emacs is one component of a Linus-hased GMU system.
You can do basic editing with the menu bar and scroll bar using the mouse.

Useful File menu items:
Exit Emacs {Or type Control-= fallowed by Contral-c)
Recover Session Recover files you were editing before a crash

This is GNU Emacs 21.3.1 {i386-redhat-linux<-gnu, ¥ toalkit, Xaw3d scrall bars)

of 2004-04-15 on bugs.devel.redhatcom
Copwight (C) 2001 Free Software Foundation, Inc.

———— GNU Emacs ——----- = s S ek S e g
% For information about the GNU Project and its goals, type G-h G-p.

Figure 2-1

49

Chapter 2

50

As you can see in the figure, modern versions of emacs include a menu bar. The commands available
from the menu bar are invaluable for learning emacs. You don’t have to remember all the strange key
combinations. Many of the menu choices show the corresponding key combination, which helps you
learn emacs gradually instead of all at once.

Emacs can be highly customized. Your version of emacs may differ. Don’t worry. Use the online help to
get started.

You can also tell the emacs command to load a particular file or files on startup, speeding up your work.
For example, to start an emacs session with the script1 file from the first example in this chapter, use
the following command:

$ emacs scriptl

This command tells emacs to load the file named script1l in the current directory.

The most important commands for using emacs appear in the following table.

Emacs Key Combination Editing Command Long Name

C-xC-s Save text in the current buffer with save-buffer
the current filename.

C-xC-c Save and quit. Saves text in the save-buffers-kill-emacs
current buffer and exits emacs.

C-xC-w Save text in current buffer under a write-file
different file name.

C-x CA Open file. find-file

C-g Magic operation to cancel a running keyboard-quit

operation that appears hung.

In the previous table, the long name is the official emacs name for the given operation. The long name is
useful should you decide to customize emacs, an advanced topic. The long names also give you an idea
of how emacs names its commands and what kinds of commands are available. You can run a long com-
mand by pressing M-x and then typing the command name.

Press Enter after typing in the command name. For example, to open a new file, you can choose Open
File from the File menu; type c-x C-£; or, to prove you know emacs, type M-x find-file.

The great claim that emacs is modeless isn't entirely true, as you can find out if you try the M-x key
combination to run an emacs command. M-x won’t always work because of hidden emacs modes. Try
M-x in a buffer that you can edit, which is not a help buffer.

Emacs supports an extensive online help system. This is great because unless you've been trained with
emacs, most newcomers get confused by the huge number of editor commands available. The following
table lists the main help commands.

Introducing Shell Scripts

Emacs Key Combination
C-h C-h

C-hi

C-h c key

C-h k key

C-ht

Ch-x command

C-hb
C-h a text

Help Command

Get help on using emacs help
View the emacs manuals

Show the long command for
the given key

Show more description
for the given key

Enter the emacs tutorial

List the keys for a given
long command name

List all key bindings (long)

List all commands containing text

Long Name

help-for-help
info

describe-key-briefly
describe-key

help-with-tutorial

where-is

describe-bindings

command-apropos

The Help menu also provides a lot of options. You'd be amazed to see all the online material on emacs
available from the Help menu. The emacs manuals support a primitive type of hypertext, called info.
The info system was created long before the Internet and HTML became popular.

Because there are so many key combinations, emacs provides a lot of help to figure out which key does
what. You can use the C-h ¢ or C-h k combination to figure out which command emacs will execute for
a given key. With either the C-h c or C-h k combination, you need to press the actual key combination to
see the description. For example, to determine what the c-h t combination does, press C-h ¢ C-h t.

The area at the bottom of the emacs window, called the minibuffer, should then display the following;:
C-h t runs the command help-with-tutorial

This feature is great if you try one of the commands listed in this chapter and it doesn’t do what you
think it should.

Emacs provides a huge number of commands to navigate through a file. Remember that emacs was
designed before users could rely on having arrow keys, let alone a mouse or a standardized keyboard.
The following table shows the main emacs navigation commands.

Emacs Key Combination Navigation Command Long Name

C-f Jump forward one character forward-char
C-b Jump backward one character backward-char
C-n Jump down one line next-line

Cp Jump up one line. previous-line
M -f Move forward one word forward-word

Table continued on following page

51

Chapter 2

Emacs Key Combination

M-b
C-a
C-e
M-<
M->
C-v
M-v
C-1

C-s
C-r

Navigation Command

Move back one word

Move to beginning of the line
Move to the end of the line
Move to beginning of file
Move to end of file

Jump forward one screen
Jump backward one screen

Clear screen, move cursor to
center of file, and redraw

Search forward

Search backward

Long Name

backward-word
beginning-of-line
end-of-line
beginning-of-buffer
end-of-buffer
scroll-up
scroll-down

recenter

isearch-forward

isearch-backward

Yow. Don’t worry, though. If you run the graphical version of emacs, you can use the scroll bar, the mouse,
Page Up and Down keys, arrow keys, and other modern features you’d expect. In addition, most versions
of emacs come preconfigured for standard PC keyboards. So, for example, the Home key should move the
cursor to the beginning of the line, and the End key should move the cursor to the end of the line.

In older versions of emacs, pressing the Home key moved you to the start of the whole file, while End
moved you to the end of the file. You may still see this behavior, depending on how emacs has been cus-

tomized for your platform.

To type at a particular location, just click the mouse where you want to type.

Emacs supports a powerful search engine. Type C-s to start searching. As you type the text to search for,
emacs already starts searching. This is called an incremental search, and it proves very powerful and fast.
To search for the next occurrence of the text, type C-s again, and so on. Use C-r to search backward.

Emacs uses a block cursor that may confuse you. The Macintosh pioneered the idea that the cursor
appears between two characters, which simplified a lot of issues for how selections and keys should
work. Emacs, however, always places the cursor on a character position rather than between characters.

This can be a bit disconcerting at first.

Emacs also causes confusion with its support for copy and paste. The keys chosen by emacs, at least by
default, conflict with the standardized shortcuts for cut, copy, and paste on most platforms. The follow-
ing table shows the emacs copy and paste commands.

Emacs Key Combination Copy and Paste Command Long Name
C-w Cut selected text kill-region
M-w Copy selected text kill-ring-save
C-y Paste text yank

52

Introducing Shell Scripts

Emacs provides a powerful concept called a kill buffer. A buffer in emacs is an area that holds text. The kill
buffer is where emacs places text that has been cut. You can bring text back from the kill buffer (what
most people call a paste operation). To copy or paste text, select the text you want with the mouse. You
can also mark text by moving the cursor to the beginning of the text block, marking the start, moving the
cursor to the end of the text block and marking the end, and then cutting or copying the text. Using the
mouse proves a lot easier.

See the online help within emacs for more on how to mark text.

The classic emacs keys for cut, C-w, and paste, C-y, were chosen long, long ago, before the Macintosh
appeared, before IBM’s CUA (Common User Access) interface guidelines (the guidelines for the
Windows interface), even before DECwindows. These keys become a problem, however, when you try
to work with other applications. Now you can do everything, really everything, in emacs But, most
users also run other programs such as word processors, web browsers, and so on.

Microsoft Word in particular conflicts with emacs. C-y, which is the default shortcut for paste in emacs,
is redo in Word (and also in the OpenOffice.org Writer application). C-w, which is the default shortcut
for cut in emacs, closes the current window in both Word and Writer (and in many other applications).

You can remap keys in emacs to help mitigate this problem with interoperability. But C-x, which should
be the cut command in Word, is problematic because C-x is the prefix used for a huge number of emacs
commands.

To be fair, emacs predates Word, Writer, and most other desktop applications. That’s no consolation,
however, when you try to work with multiple applications together.

In addition to cutting selected text, emacs provides a number of commands to delete text, from charac-
ters to words to lines. The following table lists these commands.

Emacs Key Combination Text Deletion Command Long Name
Delete, C-d Deletes the character under delete-char
the cursor
Backspace Deletes the character to the left backward-delete-char-untabify
C-Delete, M-d Deletes word, to the right of kill-word
the cursor
C-k Deletes to the end of the line kill-line
C-t Transposes (swaps) two transpose-chars
characters
Insert Toggles overwrite mode overwrite-mode

As usual, these key combinations can be customized, so your version of emacs may differ slightly.
As mentioned previously, emacs is an old application, appearing prior to graphical windowing systems.

Over the years, however, emacs developed its own text-based windowing system. These textual win-
dows are called buffers.

53

Chapter 2

54

A buffer is both an area of memory that holds text and a subwindow in the emacs window. Sometimes
this second meaning is called a window, but the documentation is not always consistent. Separate top-
level windows in emacs are called frames.

With emacs, the C-x 2 key combination splits the current window into two buffers. That is, press Ctrl-X,
followed by 2. You can edit two separate files, one in each buffer. Or both windows can refer to the
same buffer, allowing you to view and edit at two places in the file at once. This feature can prove very

convenient.

The following table lists the emacs buffer-related commands.

Emacs Key Combination

Buffer-Related Command

Long Name

C-x2 Split window split-window-vertically

Cx1 Return to one window delete-other-windows

C-xb Jump to next buffer switch-to-buffer

C-x b buffer Switch to the named buffer switch-to-buffer

Cx4b Jump to next buffer and create switch-to-buffer-other-window
a subwindow for it

CxC-b List current buffers list-buffers

C-x C-f Load file into buffer find-file

C-x4f Load file into new subwindow find-file-other-window

C-xC-s Save current buffer to current save-buffer

file name

In addition to splitting the current window into two subwindows, emacs keeps a list of buffers. You can
have a number of buffers hidden off-screen, such as the kill buffer. The C-x b key combination jumps to
the next buffer in the buffer list. The C-x C-b combination lists all the available buffers.

Once you can find your way around a file and edit text, you can make use of the interactive shell inside
emacs. Using the M-x eshell command starts an eshell, or emacs shell, inside an emacs buffer. This
shell appears in Figure 2-2.

Because this shell appears inside an emacs buffer, you can select text, copy and paste from other buffers,
and grab previous shell commands. Thus, you can edit a shell script in one emacs window while trying
out the commands in another window.

As you can imagine, back in the day emacs was a very, very productive tool. Nowadays, emacs shows its
age, but it still has many users. The embedded shell helps when writing shell scripts.

There is another version of emacs called xemacs, available at www.xemacs.org. Xemacs provides more
support for graphical environments. The two versions differ, and there seems to have been a bit of con-
flict in the past between the emacs and xemacs partisans. Choose whichever version of emacs you prefer.

Introducing Shell Scripts

emacs@localhost.localdomain

File Edit Options Buffers Tools Help

D® X &GP ?

I Velcome to the Emacs shell

~furiting/begimming shell scripting/scripts § ls

backupl foo scriptl.sh scriptlh scriptd script_g
counterl myls scriptll scriptls scripth script v
counter? myls2 scriptll seriptlT scriptt sleep counter
counterd params scriptl2 scriptl® script7? tktext.pl

csh var readpipe. tcl scriptl3 script? scriptd wvar_refs
error soriptl scriptld scriptd script9 wercompare. py

~furiting/beginning shell scripting/scripts § I

7
-u:-- *gshell* (EShell)-~L10=--a11l----= —m=- et 4
It
Figure 2-2

Learning vi Modes

Emacs may show its age, but before there was an emacs, vi was the best thing around. The fact that vi is
still here, and still being used, shows that it, like shells and shell scripts, still serves a purpose for many
users. Vi, short for visual editor, is a modal editor. In vi, there are two modes: insert and command. In
insert mode, the text you type gets entered into the file you are editing. In command mode, the keys you
type are interpreted as vi commands, short cryptic commands that can have a major effect on your files.
To start vi, simply enter the vi command:

S vi
You can also start vi with a session editing a particular file. For example:

S vi scriptl

This command tells vi to edit a file named script1 in the current directory. Vi can create the file if it
does not exist.

55

Chapter 2

56

You can pass more than one file name on the command line. For example:

$ vi scriptl script2 script3
Vi shows each file one at a time. The :n command (see the second table following) jumps to the next file.
When you start vi, the editor places you in command mode. Thus, any keys you start typing are
assumed to be commands. Unlike emacs, you cannot just start typing text. Instead, you have to enter a
command to switch to insert mode. The most common command to enter insert mode is a lowercase i,

short for insert.

The following table lists the commands to switch over to insert mode.

Vi Insert Command Purpose

i Inserts before the current character

I Inserts at the beginning of the line

a Appends after (to the right of) the current character
A Appends at the end of the current line

o Inserts a new line after the current line

(@) Inserts a new line before the current line

Once in insert mode, the text you type gets entered into the file you are editing. Press Esc to exit insert
mode.

Some versions of vi display text at the bottom of the editor telling you that you are in insert mode, such
as the following:

—-- INSERT --
But many versions of vi provide no feedback as to which mode you are in. If you're ever unsure, just
press Esc twice. If you are already in command mode, vi merely beeps at you. When you get into com-
mand mode, vi beeps at you.

One of the best descriptions of vi is that it is a program that beeps at you a lot.

In command mode, you can use the arrow keys to navigate through the file. You can also use special
keys to navigate, as listed in the following table.

Vi Navigation Key Purpose

h Move one character left.
j Move one line down.

k Move one line up.

Introducing Shell Scripts

Vi Navigation Key

1
Ctrl-D
Ctrl-U
Ctrl-F
Ctrl-B
G

1G

number G

Purpose

Move one character right.
Move down one-half page.
Move up one-half page.
Move forward one page.
Move back one page.
Jump to the end of the file.
Jump to the first line.

Jump to the given line number.

The G command takes you to a given line number. This is very useful when you get an error from the
shell about a shell script. Usually the error message tells you which line had the error. While this may
not always be accurate, you can use the G command to quickly jump to the line in question. Simply enter
the line number and then an uppercase G, and vi takes you there.

Chapter 11 covers how to deal with errors and fix them in your scripts.

You can use this method of placing a number before a command to perform the command that many
times. For example, 43 moves the cursor down four lines.

Remember, you must be in command mode for these commands to work.

Vi supports a number of file-related operations, as you’d expect from any text editor. The following table

lists the main file-related operations.

Vi File-Related Command

V4

W

rew
‘W filename

f

Usage

Save current file and quit vi.

Save current file.

Save current file and quit vi.

Quit vi. Does not save.

Really quit vi. (Like shouting.)

Jump to the next file.

Go back to the first file.

Save the current text under a different filename.

Report the name of the current file and the current
position.

57

Chapter 2

Vi supports a number of special commands that start with a colon character (:). These include :w to
write the current contents to disk (under the current file name) and : g to quit vi. If you try to quit vi
without saving, vi beeps at you. You can force vi to quit with the :g! command. The exclamation mark,
!, acts as a way to force vi to do your bidding. You can use it with other commands, such as :n! to jump
to the next file without saving the current file. Note that any changes you made will be lost, the same as
if you quit without saving.

You can also use :w! to overwrite a read-only file if you are logged in as root.

Like emacs, vi supports yanking (copying and pasting) text, although with a different set of commands,
as shown in the following table.

Vi Copy and Paste Command Usage

yy Yanks current line into buffer, similar to copying to the
clipboard.

P Puts the yanked text on the next line after the current posi-

tion of the cursor.

number yy Yanks more than one line, as specified by number.
u Undoes the last command.
r Redo, when called after an undo, performs the undone com-

mand again. Not supported by default in vim.

Repeats the last command.

You can yank, or copy, four lines of text with the 4yy command. You can then move the cursor about and
paste the lines into the text with the p command.

You can search in vi with the / command. Just type / and then the text to search for. The following table
summarizes the vi search commands.

Vi Search Command Usage

/text Search for text going forward.

/ Search again for the same text, going forward.
?text Search for text going backward.

? Search again for the same text, going backward.
n Repeat last search.

N Repeat last search, but reverse the direction.

Over the years, versions of vi have advanced far beyond the original simple program that beeps a lot. A
version of vi called vim, short for vi improved, adds a host of new features to vi. Vim provides for syntax
highlighting for programming files, including shell scripts, and an amazing amount of extended func-
tionality. Vim includes extensive online help and multiple split windows.

58

Introducing Shell Scripts

Linux ships with vim as the default implementation of vi. Thus, if you type vi or vim, you get the vim
command. Mac OS X does the same, using vim for vi.

See www.vim.org for more on vim. Vim is free but considered charityware. The vim web site asks that if
you find vim useful, you consider helping needy children in Uganda.

You may also want to load Cream for Vim, a graphical front-end to vim. This add-on makes vim appear
almost as a fully graphical editor, including scroll bars and menus.

Download Cream for Vim from cream.sourceforge.net.

If vi or emacs isn’t your cup of tea, you can choose from a large variety of graphical modern text editors.

Moving to Graphical Text Editors

In addition to the legacy text editors, you can choose from a wide variety of more modern graphical text
editors. These editors usually include menus, the ability to change the text font, and scroll bars —all
useful features for text editors.

Editors are personal tools. Just as different people like different types of cars, people have different tastes
in text editors. What works for one person may bug the heck out of another. There’s no one right editor
for everyone, so choose one that works for you.

If you are starting with Linux, Mac OS X, or Unix, then you should begin with a more modern editor.
And there are modern editors for just about every taste. You can choose from editors that just run on a
particular platform, such as Mac OS X, or choose from a number of excellent cross-platform editors.

Cross-Platform Editors

Moving between systems can be hard. If you work on any combination of Mac OS X, Linux, Windows,
or Unix systems, you'll be faced with learning how each system operates over and over. Even something
as simple as quitting an application or closing a window differs by platform. This problem only gets
worse when dealing with text editors, something most script developers use for hours a day.

If you need to work on different systems, especially Linux and Windows systems, you probably want to
get a cross-platform text editor. Instead of having to relearn all the special options for text editors on
each platform, you can learn an editor once and then reuse your skills on multiple boxes. These are all
programs that can run on multiple operating systems and should act the same, or nearly the same, on all
supported systems.

Note that emacs and vi are cross-platform editors as well. You can download versions of either editor for
a plethora of systems. See the section Using Legacy Editors for more on emacs and vi.

jEdit provides one of the favorite cross-platform text editors. Available at www.jedit.org, jEdit runs on
any system that supports Java on the desktop, including all the desktop systems listed so far. jEdit
requires a Java Runtime Environment available from www.java.com, to execute. jEdit is too large a pro-
gram for most PDAs, however.

59

Chapter 2

jEdit supports syntax highlighting, showing comments, for example, in a different color. jEdit supports
most source file formats and includes a lot of features. You can download plugins that extend jEdit,
adding new functionality. jEdit can manage the task of downloading and installing plugins, which
makes this whole process painless. In addition, you can customize the jEdit display to place, or dock,
windows where you want them.

jEdit appears in Figure 2-3.

| JEdit - scripta
Flle Edit Search Markers Folding Yiew LUtliities Macros Plugins Help

LOSHADY e Q20008 AR 1 A« =

[commands ! [Flugins w|[Fa\ [scripta (/home2 ferict)writing/beginning_shell_scripting/scripts /)

Path. |scripting/scripts ¥ | | |echa "Han. ..determining operating system..."
[¥ Fitter: [* w| | |echo -n "This computer runs: "
| |unane

I»

E3
=
£
4

B8 writing
i beginning_shell_s.

| backupl
' counterl
Y coumer2
coumers
csh_var
error
rmyds
rmds2
params
readpipe.tcl
seriptl
_1 scriptl.sh
1 script2

9 script?

1 script4
Y seripts
Y seripe
N seript7
_ scripta

j scriptd

1 seriptlo
9 seriptl
Y script1z2
9 scripti3
j scriptl4

9 scriptls

Y scriptl6

1 scriptd?

1 scriptls -
Y seriptg [AT T+ |
[L1 A0 (makefile, none, UTF-5) - - - | RGN

WLl O

[XSLT Processor|[Structure Erawser| Browse |'Em‘.rList| Buffer List

Figure 2-3

Another cross-platform editor, known simply as J, includes a huge amount of functionality right out of
the box.] supports special modes for editing Java, JavaScript, XML, and a number of other file syntaxes.
J works the same for all formats, providing a consistent editing environment.] supports reading and
sending email and the CVS source code control system. There are other neat aspects to J that you just
have to discover.

60

Introducing Shell Scripts

In addition,] doesn’t barrage you with a huge number of options. This is also the downside of J. You
have to be able to edit J's property files to customize the editor. If you work in a text editor for a large
part of every day,] can prove quite productive.

Like jEdit,] runs on any system that supports Java on the desktop. Download] from http://armedbear-j
.sourceforge.net.

Jext provides yet another Java-based text editor. Jext, available from www.jext.org, provides a simply
beautiful text editor with a host of features. Like jEdit, Jext supports plugins to extend the functionality
of the editor.

Of these three Java-based text editors, jEdit provides the largest number of features.

Eclipse is a full-blown IDE (Integrated Development Environment) for developing Java applications. A
handy editing plugin called color editor performs syntax highlighting on approximately a hundred file
formats, including shell scripts. The color editor plugin actually uses the jEdit syntax definition files to
highlight the source code.

Download Eclipse from www.eclipse.org and the color editor plugin from http:/ /gstaff.org/colorEditor/.
You will also need a Java Runtime Environment.

Another popular editor for those who work with software is SlickEdit, an editor that runs on Windows,
Linux, Mac OS X, and most popular Unix systems. You need to get a different version of SlickEdit for
each platform. You can purchase SlickEdit from www.slickedit.com.

Mac 0S X Editors

For text editors on Mac OS X, you have an embarrassment of riches. Along with the editors mentioned
previously, you have a number of free, shareware, and commercial editors that exist only for Mac OS X
and take advantage of some of the unique features of the Mac operating system.

Luckily, you get one for free, namely TextEdit. This lives in the /Applications folder and is a basic text
editor, with some additional features. One feature that you have to watch out for is that by default,
TextEdit uses RTF, not plain text, for its normal format. Because RTF is not usable for shell scripts, you
want to make sure that you select Make Plain Text from the Format menu, as shown in Figure 2-4. This
ensures that the file you save is a plain text file, as required for shell scripts.

{=lqucid Window Help |

Font b
Text >

[@ TextEdit File Edit

Make Plain Text 3T
Prevent Editing

Wrap to Page W
Allow Hyphenation

Figure 2-4

While TextEdit is a good basic editor, it’s really not designed for shell scripting. It’s a bit of a station wagon
in that it does everything okay, whereas you want something that’s built with your needs in mind.

61

Chapter 2

There are a lot of editors out there, but the best one that won’t cost you a lot of money is SubEthaEdit, by
the appropriately named Coding Monkeys, at www.codingmonkeys.de/subethaedit/. SubEthaEdit is a
programmer’s editor and has a lot of the things you want out of such a beast. First, everything is plain
text. Second, it supports features like syntax highlighting. It’s reasonably extensible. It also allows other
people using SubEthaEdit on your local network to collaborate with you on a document at the same
time. Aside from the shared editing, it also supports features such as regular expression searching (intro-
duced in Chapter 1), the ability to jump to different parts of your script, and split-screen views, which
are great for things such as long scripts where you have one part of the script relying on another part,
and there are 8 billion lines of code between them. Split-screen views let you see both at once, so you
spend more time scripting and less time coding.

If you're using SubEthaEdit for personal use (read: not in a commercial environment), then it’s free. If
you're using it in a commercial environment, then the cost for three licenses is $35 U.S., which is pretty
reasonable for such an amazing product.

But the true leader in the Mac OS X text-editor race is BBEdit from Bare Bones Software, at www.bare
bones.com/products/bbedit/. BBEdit is one of those products that have so many tricks and short-
cuts you don’t even realize how badly you need it until you use it. To start with, if you're an emacs user,
you can tell BBEdit to use emacs keybindings, or keyboard commands, so that your muscle memory
still works. BBEdit has command-line components, so if you're in a shell window, you can open a file in
BBEdit directly from the shell, edit it, close it, and never have to deal with the Mac OS X open/save dia-
log boxes. BBEdit is shown in Figure 2-5.

BBEdit doesn’t support every emacs shortcut. (For all its coolness, it’s only a text editor. You can’t send
email from it. Although if you need to send email from something with a Bare Bones logo, they’ll happily
sell you an email program.)

B O 6 ..al —tcsh — tesh (typ2) — 59x36 A66

™ Last Saved: 07
= — File Path: [priv

el
3
=
L

L
w# nhtkpd.cont — Apache HTTF server configuration Tilen
[T

& K113 |

= %
6| ® Based upon the MCSA server configuration files originally by Rob MeCool.-
e

Thiz iz the main Apacha zarvar canfiguration fila. |t contains tha-

configuration directives that giwe the serwer |ts Instructions.-

- 10 ® See CURL:hitps/wu.apache org/docs/ for detoiled infornation cbeut
11 # the directives.s

Lost login: Mon Sep 27 Z2:49:48 on ttypl ® Do HOT sinply read the instructions in here without understanding-
Vielcome to Darvin! 14| ® what they do. They're here only as hinks or reminders f you ore unsuren
the online docs. You hove been warned.

file s processed, 1
eto Mt ’£|n conf ond

ser will look for and process-
privatefetehttpd/access . cont
you have cverriddan these with ResourceConfig and/for~

[Aurora:~] juelchd bbedit Jete/httpd/httpd.conf :_‘*””“' -onfig directives hare.-
[Auroraz~] juelchs | E>

tives ore grouped into thres basic sections:

1. Directives that contral the cperation of the Apache sarvar process as a-
whole (the 'global enwirosment').~

. Directives that define the peraneters of the 'main' or “defoult' server,-
vhich responds ko requests thak aren’t handled by a virtual host.s

Thasa directives alzo provide default valuss for the settings-

0

ts, which allow Heb requests to be sent bo-
or hostnanes and hove then handled by the-
Process .

zana Rpachy

"
"
"
g | ®
"
"
"
"

33 ® Configuration le nones: If the filenohes uou specify fo
of files begin with */" {or s
cit path. If tha filerames do
I= prepended ——
3 with Serv wl/.u«t_l.e uill be inte erpreted b the
38| # server as /logs/foo. ag® -
30| #e .

with ==,

AL -

Figure 2-5

62

Introducing Shell Scripts

But wait, there’s more! BBEdit has built-in support for regular expressions and can apply them to multi-
ple files in multiple folders at once. It’s tightly integrated into the shell environment, so you can run the
scripts you're working on from within BBEdit and never have to switch between BBEdit and a Terminal

window.

Do you want to use Perl or Python within BBEdit? It’s in there. Want to be able to connect to a remote

machine securely via SFTP to edit scripts there? Built in. Want to open those remote files from the shell
in BBEdit via SFTP? Can do. Want to use BBEdit from the shell to check differences between two or more
files? In two or more folders? Got it. BBEdit’s not shareware, nor is it Open Source, but if you want the

ultimate text tool on Mac OS X, then BBEdit is what you want.

Linux Editors

Each of the Linux desktop environments includes one or more text editors, and you can choose from a

plethora of other graphical text editors for Linux.

For the GNOME desktop, one of the main editors is gedit, which appears in Figure 2-6.

I fhomeZ/fericlj/writing/beginning_shell_scripting/scripts/scriptla - gedit
Eile Edit View Search Tools Documents Help

BE.86 ¢ ¢ DD Q8 W

Mew Open Save Prnt Updo Redo Cut Copy Paste Find Replace

(| 1 myls x| [myls2 ll ' counterl x| | counterd n| ! sleep_counter li ' counter2 X

Script to ask a user's full name and state of residence.
Script welcome's user to a company. Good luck!

This is a Bourne shell script. It predates the

Microsoft takeover of all computing, so it is not
written in VB.NET. TODO: Update to VB.NET.

echo -n "Please enter your first name: "

read FIRSTNAME # Read the user's input.

echo -n "Please enter your last name:
read LASTNAME

echo -n "Please enter the name of the state where you live:
read STATE

"

FULLNAME holds the user's full name. The reason for

the separate variables is to allow for future modifications
to query on the user's last name. For that, the last name
must be separate from the first name.

FULLNAME="$FIRSTNAME $LASTNAME"

NOTE: This message may get long.

MESSAGE="Well, $FULLNAME of $STATE, welcome to our huge"
MESSAGE="$MESSAGE impersonal company."

echo "SMESSAGE"

TODO: Each worker should be assigned a different

scriptl X

Ln 17, Cal 1

Figure 2-6

63

Chapter 2

Gedit provides a basic text editor in a friendly-looking window. In addition to basic text editing, gedit
supports the syntax of a number of programming and markup languages, such as Java, C++, XML, and
HTML. Gedit does not highlight shell scripts, unfortunately.

A special gedit plugin allows you to run commands, such as shell scripts, and capture the output of
these commands. Gedit shows the output in a separate window. As with the emacs editor, the ability
to run shell scripts from within the text editor is a great help.

For the KDE desktop, kate defines the main KDE text editor. Kate provides a full-featured text editor,
supporting many more features than gedit, including the capability to manage projects. Each project
includes a number of files, and this feature is very useful for Web site development or programming.

You can rearrange the kate interface, moving and customizing toolbars and keyboard shortcuts. Kate
supports plugins to extend its functionality. For example, the default kate installation includes plugins
for working with C++ programs, HTML web pages, and XML documents.

Cute, available at http:/ /cute.sourceforge.net, provides a text editor aimed at beginners. This editor is
built on the Qt (pronounced cute) libraries. Qt forms the base of the KDE desktop software.

Other graphical editors for Linux include SciTE and Glimmer. SciTE, from www.scintilla.org/SciTE.html,
started as a demonstration application that evolved into a comprehensive programmer’s text editor.
Glimmer, from http://glimmer.sourceforge.net, provides another graphical editor with syntax highlight-
ing for shell scripts and other programmer-related file formats.

Unix Editors

64

Just about all the Linux editors can work on Unix, although the GNOME or KDE editors may require too
many Linux libraries to make the porting effort worthwhile. For example, unless you have the full
GNOME desktop for your Unix system, it is unlikely you can get an editor such as gedit to work. That’s
because GNOME (and KDE) applications have a large number of dependencies on libraries that come
with the full desktop environments.

The standard Unix desktop is called CDE (Common Desktop Environment). CDE should be available on
most commercial versions of Unix such as Solaris or HP-UX, except for Mac OS X, where there is no rea-
son to run the CDE in place of the Macintosh desktop interface.

The CDE desktop includes a text editor, available from an icon on the task bar. This is a fairly bare-bones
editor but friendlier than vi or emacs.

A favorite Unix text editor is NEdit. NEdit, available at www.nedit.org, requires the Motif libraries (now
freely available for most platforms as OpenMotif from www.openmotif.org). Motif forms the basis of the
CDE as well. You can download prebuilt versions of NEdit for Linux and most versions of Unix from the
NEdit web site.

NEdit looks a bit dated with the standard Motif look, but don’t let that put you off. For Unix text editors,
NEdit provides an amazing amount of power and simplicity. NEdit has been optimized for speed and
keyboard efficiency. It supports shell scripts and lots of other programming-related file formats, such as
C, Java, and so on. You can see NEdit in Figure 2-7.

Introducing Shell Scripts

File Edit Search Preferences Shell Macro Windows ﬂelp|

Script to ask a user’s full nane and state of residence.
Script welcome's user to a company. Good luck!

This iz a Bourne shell script. It predastes the
Microsoft takeover of all computing, so it is not
written in VB NET. TODRO: Update to VB NET.

echo —n "Please enter your first name: "
read FIRSTHAME # Read the user’s input.

echo -n "Please enter your last name: "

read LASTNAME

echo -n "Please enter the name of the state where you live:
read STATE p

FULINANE fHolds the user’s full name. The reason for

the separate variables is to allow for future modifications
to query on the user’s last name. For that, the last nane
must be separate from the first name.

FULLNAME="5F IRSTNAME SLASTMAME"

& NOTE: This message msy get long. A
I~ i
Figure 2-7

In addition, NEdit can run in a server mode. You can type in the nc command to launch an NEdit win-
dow with a given file or, if NEdit is already running, call up the given file in the running NEdit. This
proves very handy when you browse directories and want to edit or view files.

A networking package also has a command named nc, so you may find conflicts, especially on Linux,
where nedit and its nc command are located in /usr/X11R6/bin while the networking nc command is
located in fusr/bin.

Microsoft Windows Editors

Microsoft Windows includes an ancient editor called Notepad. Generally, because of the way Notepad
handles the end-of-line characters, you should not use this editor for scripting or programming.

Instead, Textpad provides a very good Windows editor. Like many of the other editors listed here,
Textpad highlights the syntax of shell scripts. You can download specific syntax definitions for the
Bourne, C, and Korn shells. Textpad is one of the fastest and most responsive editors for Windows.
There are lots of additional editors to choose from on Windows.

You can download Textpad from wwuw.textpad.com. It is a shareware application.

When you have selected a text editor, you can begin to create shell scripts in earnest. The next sections
cover some of the basics for scripting. The next few chapters continue with the basics.

Writing Scripts

Writing scripts is as simple as editing text files with the commands you want in your scripts. The hard
part comes when you need to enter the commands correctly and tie the commands together into useful
scripts. The following sections introduce the basics of scripting, starting with a very useful task: letting
scripts remember for you.

65

Chapter 2

Remembering Commands So You Don’t Have To

Alot of commands sport complex, hard-to-remember arguments. You may find yourself looking up the
online manual pages for a command each time you want to run it. If you run this command a lot, you'll
start to remember. But if you run this command infrequently, you'll likely forget.

Even if the commands are simple with a few options, you may want to store the commands in scripts so
that you can simply execute the scripts instead of remembering and typing the whole commands. The
following Try It Out examples illustrate this procedure.

Try It Out Launching a Music Player

Xmms plays music on Linux systems (so do a number of other programs). You can collect a number of
songs into a playlist and store this playlist in a file. Passing the name of this file as a command-line argu-
ment will tell xmms to play the songs on that list.

All of this involves a lot of typing. Instead, create a script like the following:
xmms SHOME/multi/mp3/reggae_playlist.m3u

Save this script under a name such as reggae (the style of music) or favorites or irieriddims or any
other name that makes sense.

How It Works

This script runs the xmms command and passes the name of a playlist file to the command. This script
foreshadows the deep, dark subject of variables. $HOME refers to your home directory on Unix, Linux,
and Mac OS X. You can then run your script in place of typing in the full command.

You need to create the playlist itself inside xmms and then save the playlist to a file. You can replace the
playlist file in the previous script with the name of your playlist file.

You can use this script as a guide for other commands or your own playlists. Of course you like reggae
music, but you may have chosen to store your files in a non-optimal location (as this example shows the
one true location to store music files).

Just kidding. Anyone who tells you that there is one true location for something is just wrong, plain
wrong. Any such person deserves to be trapped in a corner while you patiently explain, again and
again, about how the variable factors such as file system types, inode allocations, and disk-partitioning
schemes impact the true correct location for any particular type of file. Just kidding again. The best bet
is to distract these annoying people by asking which is best: FreeBSD, OpenBSD, or NetBSD Unix. Get
the discussion started and then quietly walk away.

Try It Out Running an Application from Its Installation Directory

As another example, the BuddySpace instant messaging (IM) client communicates with Jabber servers
and also the common protocols for MSN, AIM, Yahoo!, and ICQ instant messaging. BuddySpace is writ-
ten in Java, making it another cross-platform tool.

66

Introducing Shell Scripts

Cross-platform tools are, by definition, good.

BuddySpace, however, requires that it be started from its installation directory. Otherwise, it may not
find all the needed files.

Enter the following script and save it under the name jabber:

cd $HOME/java/im/BS252pro-complete ; sh buddySpace.sh

How It Works

This command appears in two parts. The first part changes the working directory to the java/im/
BS252pro-complete subdirectory of your home directory (using $HOME again). The second part uses the
sh command to launch a shell script. (Yep, a script can launch another script.)

This example shows another new technique. You can place two commands on one command line. Use a
semicolon to separate the commands.

Download BuddySpace from buddyspace.sourceforge.net.

Outputting Text

Most scripts need to output text of some sort. The output may be the results of a command, covered in
Chapter 8. Or you may just want to prompt the user to enter data for the script. In any case, the primary
way to output text from a script is the echo command, introduced in Chapter 1. Recall that the basic
syntax is:

echo text_to_output

Pass echo the text you want to output. The following example shows how to use echo in a script.

Try It Out Creating a Hello World Script

Enter the following into a file and name the file script4:
echo "Hello World"

When you run this script, you'll see the following output:
$ sh script4

Hello World
$

How It Works

The echo command simply outputs the text you pass to it. The text “Hello World” is required for any
programming book.

I'm violating convention here by using a name other than helloworld for the script, however. I'm an
iconoclast.

67

Chapter 2

After your script completes, you should see the prompt for the next command. The shell isn’t impatient;
it’s just telling you it is ready for the next command. This prompt can prove important with the -n
option to the echo command, as in the following example.

Try It Out Using echo without Newlines

You can pass a -n command-line parameter to echo to tell echo not to print a new line after the text. By
default, echo outputs a new line when complete. To see this at work, enter the following into a file.
Name the file script5:

echo -n "No newline"

Run this script with the sh command:

$ sh scripth
No newline[ericfj@kirkwall scripts]s$

How It Works

With the -n command-line option, echo prints out its text with no new line.

The term new line handles a yucky abstraction. For years, Unix and Linux systems used a line-feed
character (ASCII 10) to mark the end of a line of text. MS-DOS and Windows use a carriage-return
character (ASCII 13) and a line-feed character to mark the end of a line. Macintosh systems, up through
Mac OS 9, used a carriage-return character to mark the end of a line. Thus, there were three main ways
to signify the end of a line of text, depending on the platform. Programming and scripting languages
have had to deal with this issue for years. For shell scripts, the term new line means whatever character
or characters are needed for a given platform to mark the end of a line of text.

Note how the bash prompt for the next command, [ericfje@kirkwall scripts]s, appears right after
the text from script5, No newline. In this example, the text appears as a confusing mush, but this tech-
nique is very useful when asking for user input (see below).

In addition, you can use the -n option to echo to build up an output message on a number of lines. This
can make your output messages easier to understand inside your script. That is, your script becomes
easier to read should you ever need to look at it again.

Comments, covered below, also make scripts easier to read.

Try It Out Writing Palindromic Scripts

68

This example shows a palindrome output a bit at a time. Enter this text and save to a file named
script6:

echo -n "A man,"
echo -n " a plan,"
echo -n " a canal,"
echo " Panama."

Introducing Shell Scripts

When you run this script, you'll see this output:

S sh scripté
A man, a plan, a canal, Panama.

How It Works

This script merely uses the echo command, with and without the -n command-line option. But it intro-
duces a key point to remember when creating output text.

The output text here is essentially the user interface for your script. Your scripts should be easy to use
and easy to understand.

The key point is that you need to insert spaces to separate items. Note how the second, third, and fourth
lines output a space first. This separates the output from the previous line. You can put the spaces on the
initial line, or the line below, as needed. The spaces make the output clear.

In addition, the punctuation, commas, and a period in this example also help make the output more
understandable. Try making the script without spaces or punctuation. Enter the following text and name
the file script7:

echo -n "A man"
echo -n "a plan"

echo -n "a canal"
echo "Panama"

When you run this script, you'll see a less understandable output:

S sh script?
A mana plana canalPanama

The -n option to the echo command works very well if you want to explain the output of a command or
just show that the computer is magical, as in the following Try It Out.

Try It Out Mixing Commands with Text Output from echo

This script shows how the computer can do magic. Enter the script that follows and save under the file
name script8:

echo "I will guess your user name."
echo -n "It is: "
whoami
When you run this script with sh, you should see output similar to the following;:
S sh script8
I will guess your user name.

It is: ericfj

Your username should appear in place of ericfj.

69

Chapter 2

How It Works

The first echo command outputs a sentence that explains what the script will do, using the word guess
to imply that the script has intelligence. The second echo command outputs text that will appear just
prior to the output of the third command, whoami.

The whoami command, short for who am I, outputs the name of the current user, your username. When
put together, through the clever use of echo -n, it looks like the script has guessed your username.

The whoami command does not exist on all platforms. If that is the case for your system, try the follow-
ing script, named script9, instead:

echo "Hmm...determining operating system..."
echo -n "This computer runs: "
uname
This script sports less magic but shows the same concepts. When you run this script, you should see:
$ sh script9
Hmm. . .determining operating system.. .
This computer runs: Linux
The output should differ based on your operating system. In Mac OS X, for example, you should see:
$ sh script9
Hmm. . .determining operating system.. .
This computer runs: Darwin
On an Audrey (which does not provide the whoami command), you will see:
sh script9
Hmm. . .determining operating system.. .
This computer runs: QNX

Note that you are logged in, by default, as the root user on an Audrey.

These examples show how to build up messages with the echo command to make your scripts look bet-
ter and provide more information about what they do.

Following on the topic of letting the computer, in the form of shell scripts, remember data for you, you
can use the echo command to remind yourself of hard-to-remember data as well, as in the following
Try It Out.

Try It Out Remembering Data for You with Scripts

70

The Yopy PDA connects to a Linux system using networking over a USB port. When you plug in the
PDA, you can type in the proper command to start up the USB networking. (Or you could configure the
Linux system to automatically start USB networking, but that’s not the topic here. There is usually more
than one way to perform a given task.)

Introducing Shell Scripts

To save on brain cells, you can fill in the proper command to start USB networking into a script. Plug in
the PDA, and run the script. The following is an example of such a script:

/sbin/ifconfig usb0 192.168.1.1
echo "Yopy is on 192.168.1.1"

Name this script yopy. When you run this script, you'll see the following output:

$ sh yopy
Yopy is on 192.168.1.1

Make sure your PDA is on and plugged into the USB port prior to running this script.

How It Works

This script really isn’t that hard to remember. The i fconfig command configures networking inter-
faces. It is a system administrator command, so you will likely find it in /sbin or /usr/sbin. The device
refers to a USB port, so usb0 sounds right. And Internet addresses in the 192.168.x.x range refer to a pri-
vate network. Remembering that it is 192.168.1.1, however, can be a pain, especially if your local net-
work runs on a different address range.

The first command sets up networking on the USB port. The second command displays a message to the
user that the networking is set up. And it helpfully outputs the Internet address for the USB device.

In addition to these uses, the echo command proves very useful to prompt the user to enter data. You
want the user to enter the right data, so you need a prompt to tell the user what to enter. See the section
Gathering Input later in this chapter for more on this.

Variables

As shown in Chapter 1, the echo command can output more than just plain text. You can also store val-
ues in variables and have echo output those values. As with programming, a variable is a named item
that can hold a value. You can store a value in a variable and later use the variable as a placeholder for
that value. This proves very useful for shell scripts.

With scripts, each variable has a name and a value. You assign the named variable to a value. You can
then access the variable’s value using a special syntax. This syntax is:

VARIABLE_NAME=VALUE
The VARIABLE_NAME is the name of the variable. Variable names must start with a letter or an under-
score (_). Subsequent characters in variable names can be letters, numbers, or underscores. You cannot
use spaces in variable names. Most older scripts tend to use all uppercase letters for variables, as this
was considered the most portable across systems. This is not necessary, however. Even from the begin-

ning of the Bourne shell, you could create variables with lowercase letters.

This syntax applies to the Bourne shell, bash, and ksh. The C shell uses a different syntax, discussed later.

71

Chapter 2

Do not place a space or anything else between the variable name, the equal sign, and the value.
To access the value of a variable, use a dollar sign, $, as a prefix to the variable name:
SVARIABLEL
This syntax tells the shell to replace the text $VARIABLE1 with the value held in the variable VARIABLEL.

The shell expands the text with the variable name, not the individual commands.

Try It Out Using Variables

Here is one of the simplest uses for shell script variables. Enter this text and save it under the file name
scriptl0:

VARIABLEl=Value
echo "My variable holds: SVARIABLEL"

Run this script with sh:

$ sh scriptl0
My variable holds: Value

How It Works

This simple example sets the variable named VARIABLE1 to a value, conveniently enough, value.
Setting the variable does nothing other than place the value into a named area of the computer’s mem-
ory. The echo command line then accesses the value of the variable. The shell, sh in this case, replaces
the text $VARIABLE1 with the value of the variable, value.

If you need to place a space in a variable value, use double quotes around the entire value, as in the fol-
lowing Try It Out.

Try It Out Using Double Quotes with Variables

In this example, you can see the use of double quotes to keep a string containing spaces as a single
value:

VARIABLE1="A value"
echo "My variable holds: S$VARIABLEL"

Save this text under the file name script11. When you run this script with sh, you will see the follow-
ing output:

$ sh scriptll
My variable holds: A value

72

Introducing Shell Scripts

How It Works

This script works the same as script10. In this case, however, the variable VARIABLE1 holds the text A
value. Because the text has a space in it, to get the space into the variable you need to enclose the value
in double quotes.

Variables and the C Shell

The syntax shown so far for setting variables does not work with the C shell (or the T C shell). For exam-
ple, if you run script11 with the C shell, you will see the following error messages:

S csh scriptll
VARIABLEl=A value: Command not found.
VARIABLELl: Undefined variable.

With the C shell, you need to use the set command:
set variable name = value

Typically, you should use lowercase variable names with the C shell. You must use the set command. You
can place spaces around the equal sign. Spaces are not required but can often add clarity to your scripts.

The following example shows how to set a variable from the C shell:

set variablel="A value"
echo "My variable holds: S$variablel"

This script is essentially the same as the script11 script for the Bourne shell. If you run this script, how-
ever, you need to run it with the csh command, not sh:

$ csh csh var
My variable holds: A value

If you skipped past it in Chapter 1, see www.faqs.org/faqs/unix-faq/shell/csh-whynot/ for a list of rea-
sons why you should avoid the C shell for scripts. This document is very technical, but suffice it to say
that industry practice is to use sh, not csh, for scripts.

Combining Variables

You can combine more than one variable in a script, as well as in an individual command line. Practice
with the following Try It Out and then let your imagination run wild.

Try It Out Mixing Variables and Commands

This example shows two variables. Name this file script12:
VARIABLE1=Cool
VARIABLE2="this system runs "

echo -n "$VARIABLEl $VARIABLE2"
uname

73

Chapter 2

Run this script with sh:

$ sh scriptl2
Cool this system runs Linux

How It Works

This example sets two variables, VARIABLEL and VARIABLE2. Note how there is no leading space in
VARIABLE2 nor a trailing space in VARIABLEL. A space does separate the values, but this space comes
from the arguments passed to the echo command.

The echo command gets a -n option to tell it to skip the new line at the end of the output. This makes
the output of the next command, uname, appear on the same line.

Building Up Commands with Variables

The script12 example shows the start of building up a command line with variables. The following
examples show how to continue this task and create commands entirely from variables.

Try It Out Listing Directories

First, you can build up the command-line argument or arguments from a variable. For example:

DIRECTORY=/usr/local
1ls SDIRECTORY

Save the script as script13. Run this script with sh:

$ sh scriptl3
bin etc games include 1ib 1libexec man sbin share src

How It Works

The shell expands the value of the variable DIRECTORY, /usr/local, and passes this value as an argu-
ment to the 1s command, which lists the files in that directory.

Try It Out Running Commands from Variables

Second, you can place a command within a variable as well. For example:
DIRECTORY=/usr/local

LS=1s
SLS S$SDIRECTORY

Save the script as script14.

The output should remain the same. This script performs the same action, in the end, as the previous
script. For example:

$ sh scriptl4
bin etc games include 1ib 1libexec man sbin share src

74

Introducing Shell Scripts

How It Works

This example extends the previous example to set the 1s command into a variable, LS. Note how the
command line now is entirely made up of variables. The shell will gladly expand both variables to create
the command to execute.

This may not seem that useful, but if you are writing cross-platform scripts, you may need different
command names for the same purpose on different platforms. For example, some Unix systems do not
have a command named install. On those systems you need to use the cp (copy) command instead.
You can use a variable to hide this difference:

INSTALL=install
Or, on other systems, use a different value:
INSTALL=cp

The difference in the script is then isolated to one section. The rest of this hypothetical installation script
would remain the same regardless of the platform.

As a similar example, the C compiler (for programs written in the C language, not for the C shell) usu-
ally has a name of cc. The GNU C compiler may be named gcc. A compiler from a company named LPI
may be named 1lcc. You can hide these differences by setting a variable named cc to the C compiler
command for a particular platform.

You may or may not have a command named cc that executes gcc. On Mac OS X systems, you have to
do a separate install of the developer tools to get gcc. If you are going to be doing a lot of shell scripting
in Mac OS X, it is highly recommended that you do this install, because it is free and installs quite a
few nifty tools for you.

Try It Out Storing a Full Command in a Variable

In this Try It Out, you extend the previous examples to create the entire command as a variable. For
example:

DIRECTORY=/usr/local
LS=1s

CMD="$LS SDIRECTORY"
SCMD

Save the script as script15.

The output should remain the same. This script performs the same task, in the end, as the previous two
scripts. For example:

S sh scriptl5s
bin etc games include 1lib libexec man sbin share src

75

Chapter 2

How It Works

By now, you've seen that it doesn’t matter how you create a command to execute, so long as it results in
a valid command. You can use variables and combine variables to your heart’s content.

De-assigning Variables

To de-assign a variable, use the unset command:

unset VARIABLE1L

This command essentially removes the variable named VARIABLEL. Do not try to access this variable
again without setting it to a new value.

Up to now, I've concentrated on the display of output and storing values. The next step is to gather
input, especially input from the user.

Gathering Input

The read command reads in data from the terminal (really, the keyboard). The read command takes in
whatever the user types and places the text into the variable you name. The syntax is:

read VARIABLE NAME
Because you are setting a variable value, do not use a dollar sign, $, with the variable name.

You can try out the read command with the following example, which shows prompting the user for
input and then, lo and behold, reading in the input from the user.

Try It Out Reading User Input

Enter the following script and name the file scriptlé:
echo -n "Please enter the new position: "
read POSITION

echo
echo "Congratulations, S$POSITION!"

Now run the script with sh:

$ sh scriptlé
Please enter the new position: Grand High Pooh-Bah

Congratulations, Grand High Pooh-Bah!

You need to enter the name of a position, Grand High Pooh-Bah in this example. Type the text and press
Enter.

76

Introducing Shell Scripts

How It Works

This script uses echo with the -n option to display a prompt, asking the user to enter the name of a new
position. I assume here that you have been promoted at work. Note how the prompt message has a
colon to help signify the computer awaits the user’s input. The prompt also ends with a space to sepa-
rate the user’s input from the prompt. This is a common technique.

After displaying the prompt, the script waits patiently for you to type in the name of the new position. If
you make a mistake while entering the text, you can use the Backspace key to edit the input. Once you
press Enter, however, the text has gone into the variable.

The next command shows a lonely echo. It has no arguments, so this echo command just prints out a
new line. This just shows how you can have greater control over the output. The last echo command
prints out the value you typed in, preceded by a message of congratulations.

You are not limited to just one read command in your scripts. You can prompt the user and read in as
many values as you need, as shown in the following Try It Out.

Try It Out Reading Multiple Values

You can use the read command more than once to capture a number of values from the user. For example:

echo -n "Please enter your first name: "

read FIRSTNAME

echo -n "Please enter your last name: "

read LASTNAME

echo -n "Please enter the name of the state where you live:
read STATE

FULLNAME="S$FIRSTNAME SLASTNAME"
MESSAGE="Well, S$SFULLNAME of $STATE, welcome to our huge"
MESSAGE="$MESSAGE impersonal company."

echo "S$MESSAGE"
echo "You will now be known as Worker Unit 10236."

Save this script as script17 and run it with sh:

S sh scriptl?

Please enter your first name: Eric

Please enter your last name: FJ

Please enter the name of the state where you live: Minnesota

Well, Eric FJ of Minnesota, welcome to our huge impersonal company .
You will now be known as Worker Unit 10236.

77

Chapter 2

How It Works

This example illustrates the same concepts as the previous example, except that now you add more than
one read command to read in three values from the user.

The script sets the FULLNAME variable to the user’s first and last name, separated by a space.

Note how the output is built up over a number of lines. First, the MESSAGE variable gets filled with the
start of the message. Then the script sets the value of the MESSAGE variable again, this time using the old
value of the MESSAGE variable itself as part of the new value. This is a method you can use to augment
the value of a variable.

Commenting Your Scripts

78

Up to now, all of the example scripts have been short and very easy to understand. You don’t need to
engage in detective work to decipher these scripts. But when you start writing real scripts, your scripts
will likely be a lot more complex. To help with this, you can enter comments in your scripts.

Comments are messages to yourself and to future archaeologists (other users) that describe what a script
is supposed to do and how it works. Comments help others understand your script. Comments also
help you understand your own script, should you need to examine the script months after writing it.

Your memory is never as good as you think it is. No matter what your 1Q is, Murphy’s law dictates that
when the script you wrote in a panic at 2 a.m. to keep your company afloat and your job intact finally
breaks six months after you wrote it, you're going to look at it and wonder just how much caffeine is
required for you to keep track of 300 variables all named x1, x2, and so on. Comments are, all too often,
the only documentation you will ever have for your code or anyone else’s code. Comments: Use them,
love them.

Comments are especially useful if you found some very clever technique to create a command. Others of
lesser intelligence may not understand the full might of your cleverness. (This will not be a problem
when you take over the world. But until then, comments can help.)

Another way to pass on knowledge is to sit around a campfire, or at a bar, at night and tell others the

crucial details that ought to have been placed in comments. This technique works best on your last day

at an organization. Refuse to write anything down. Some companies actually use this technique. And

they can see nothing wrong with this method. Until something breaks.
To enter comments in your script, start each comment line with a sharp sign (#) . For example:

This is a comment.

The # sign is often called a pound sign, a hash, or a sharp. British users cringe at the use of # as a
pound sign, because # looks nothing like the symbol for pounds sterling.

With a comment, the shell ignores all the text from the sharp sign to the end of the line. You can place
commands inside a comment, but the shell will not execute them. For example:

This is a comment with a command, ls /

Introducing Shell Scripts

You can place a comment after a command so long as you use the sharp sign to start the comment. For
example:

ls /usr/local # List the files in the directory /usr/local

The following Try It Out provides some practice in commenting a script.

Try It Out Commenting Your Scripts

The following script shows an example of some comments:

Script to ask a user's full name and state of residence.
Script welcomes the user to a company. Good luck!

This is a Bourne shell script. It predates the
Microsoft takeover of all computing, so it is not
written in VB.NET. TODO: Update to VB.NET.

ETS

echo -n "Please enter your first name:
read FIRSTNAME # Read the user's input.

echo -n "Please enter your last name: "

read LASTNAME

echo -n "Please enter the name of the state where you live:
read STATE

FULLNAME holds the user's full name. The reason for

the separate variables is to allow for future modifications
to query on the user's last name. For that, the last name

must be separate from the first name.

FULLNAME="S$FIRSTNAME SLASTNAME"

NOTE: This message may get long.
MESSAGE="Well, SFULLNAME of $STATE, welcome to our huge"
MESSAGE="$MESSAGE impersonal company."

echo "SMESSAGE"

TODO: Each worker should be assigned a different

WU number. Use the last name to look up the worker's
WUN.

echo "You will now be known as Worker Unit 10236."

end of scriptl8

Save this script under the file name script18. The script should work the same as script17 because
none of the commands changed, only the comments. Run the script with sh:

S sh scriptl$8

Please enter your first name: Eric
Please enter your last name: FJ

79

Chapter 2

Please enter the name of the state where you live: Minnesota
Well, Eric FJ of Minnesota, welcome to our huge impersonal company.
You will now be known as Worker Unit 10236.

How It Works

Note that this script is essentially the same as script17. Just the comments are new. The comments
serve a number of purposes:

80

a
a

Comments explain what the script does.

Comments explain what kind of script this is—a Bourne shell script in this case. You may want
to also comment how to run a script.

Comments explain why certain techniques were used. This will keep people from second-guessing
the scriptwriter’s intentions later on.

Comments provide warnings for potential problem areas. The note that the output message
may grow too long is one example of this type of comment.

Comments show areas that are left for future extension. This not only tells you the script writer
was thinking ahead but also shows areas you will need to work on should you need to extend
the script.

Comments show areas that are not yet finished. Often, a message will start with ToDO, a combi-
nation of To Do.

For a script this short, it has a lot of comments — too many, really.

To create good comments, don’t describe the obvious in boring detail. Instead, with each script, you
should describe, briefly, what the script does. Particularly tricky parts of the script deserve extra com-
ments to help explain what is going on.

You can lie in your comments, but that is not a good idea. You end up merely confusing yourself. You
should also skip profanity, if only to avoid future embarrassment. When the source code for parts of
Microsoft Windows appeared on the Internet, people were amazed at the amount of profanity in the
code. This is one thing that nontechnical people can see and understand in otherwise incomprehensible
source code.

Another thing to avoid are names that have, shall we say, insulting connotations. When Mac OS X was
released, people who had never dealt with Unix before, or the rather unique sense of humor of the Unix
community, went browsing through the various shell scripts that are a part of the system startup and
ran across the term “luser” (rhymes with “loser”). A long time ago, it was short for “local user” or
someone sitting at the physical computer versus someone on a remote terminal. Well, people read com-
ments by an Apple employee talking about “keeping the lusers from doing something stupid” and were
rather snarky about the whole thing. In general, even if you're in a bad mood, save the pejoratives for
the bar after work.

Introducing Shell Scripts

Continuing Lines

Most shells, including bash, sh, ksh, and csh, support the capability to type in long commands. You can
keep typing away until you enter the entire command. But very long lines are hard to read and harder to
understand. Because of this, you can break up your command using the line-continuation marker. Type
a backslash, \, at the end of a line to continue a command on the next line, as in the following Try It Out.

Try It Out Continuing Commands On and On and On

This example illustrates the use of the backslash character to continue a command on the next line:

1s \
-CF \
-1\
/usr/local
bin/
etc/
games/
include/
lib/
libexec/
man/
sbin/
share/
src/

vV V. V

This forms an extreme example, but you can use this technique when you have to type in long lines.

If you're using Mac OS X and coming to shell from an AppleScript background, the backslash is similar
to the AppleScript continuation character you get when you hit Option-Return.

How It Works

When you end a line with a backslash, the shell should display a level-two prompt to show you that the
command is not yet complete. Bash presents a > in this example. A question mark, ?, is also common.
(You can configure this prompt.)

In this example, the command starts with 1s, the name of the command. A line-continuation marker
appears immediately, continuing the command to the next line. The next line holds two options, -CF,
equivalent to -C and -F, and continues the command again. The next line holds a simple option, -1
(one), and continues on to the next line, thankfully the last. This line presents a directory, /usr/local, as
an argument to the 1s command.

This technique, or course, proves of greater use when the command line would really stretch out. For
example, the following command launches a Java application with some complex options and arguments:

exec SJAVACMD S$JAVA_OPTS \
-classpath "S$CLASSWORLDS_CLASSPATH" \
-Dprogram.name="$PROGNAME" \
-Dclassworlds.conf="$CLASSWORLDS_CONEF" \
-Dgroovy . home="$GROOVY_HOME" \
-Dtools.jar="$STOOLS_JAR" \
org.codehaus.classworlds.Launcher "$@"

81

Chapter 2

The "$@" is a special construct. It refers to command-line arguments passed to the script.

This command uses a lot of continuations to make the script, called groovy, easier to understand. Note
how each major command-line option or argument appears on a line by itself. The earlier parts of the
script, not shown here, fill in all the variables. Otherwise, the command would be far longer. For exam-
ple, on Mac OS X, the TOOLS_JAR variable is set as follows (but appearing on one line, with no wrap):

TOOLS_JAR="/System/Library/Frameworks/JavaVM. framework/Versions/CurrentJDK/Classes/
classes.jar"

As this example shows, a good way to help learn shell scripting is to examine existing scripts, especially
networking scripts or scripts that launch complex commands.

The example also uses the exec command to launch the rest of the command. See Chapter 9 for more
on exec.

Summary

This chapter presents the basics for creating shell scripts. Starting with your choice in text editors, you
can create your own scripts.

Q

Q

For editors, you can choose from a plethora of choices including emacs and vi, two legacy edi-
tors, as well as a number of graphical editors that sport more modern interfaces.

Shell scripting is not the only scripting language. There are quite a few others, including Perl,
Python, and Tcl, discussed in this chapter.

When beginning with scripts, some of the first tasks include displaying output, or text, to the
user. For scripts, the echo command provides the main way to output text to the user. You can
use echo with a command-line option, -n, to skip outputting a new line after the text. This is
most useful when creating prompts for user input.

Most scripts need to store data in some way. For scripts, you can store values in named vari-
ables. These variables can be combined, set to new values, or accessed (read) using the dollar-
sign character, $.

To gather input from the user, use the read command. The read command reads in one line of
user input, terminated by the Enter key. Read places the user input into a variable, the variable
you pass to the read command.

You can (and should) place comments in your script with the # character. You can use the \
character to continue a command on the next line.

The next chapter covers how you can use scripts to make decisions and perform different commands in
the case of different conditions, an important technique for writing your own real-world shell scripts.

82

Introducing Shell Scripts

Exercises

1. Try atleast two text editors and choose one that you find productive.

2. Regardless of which editor you picked in Exercise 1, try entering at least three of the example
scripts in this chapter with vi. Try three more scripts with emacs. Discuss what you like and
dislike about each editor.

3. Write a script to output the text message “A man, a plan, a canal, Panama” with as many com-
mands as possible. Each command must perform something useful for the script. Furthermore,
comments don’t count for the total. See how many commands you can use in your most ineffi-
cient script. Use only the shell scripting concepts introduced so far.

4. Write a command to list the contents of the /usr/bin directory (or a directory that has many
commands). You can only set and evaluate variables in your script. You cannot call any com-
mands directly. Extend this script to add some command-line options for the file listing. Try -1
(one) to list the files in one column.

5. Modify the example script17 file for users in Canada. Instead of asking for the state the user
lives in, Canadian users should be asked which province they live in. Extra credit goes to those
who can output all text in both English and French.

6. To prove you are truly an emacs guru, use M-x backward-char and M-x forward-char, the
long commands, instead of the left and right arrow keys when modifying the script17 file for
the previous question. Aren’t you glad emacs provides this option?

7. Do the same thing with vi when modifying the file script17. Show disdain for the arrow keys
and use h, j, k, and 1 exclusively. If you start to like these keys and become productive, be afraid.
Be very afraid.

83

Controlling How Scripts Run

Once you get beyond some trivial scripts, you'll soon find that a script that just runs command
after command after command doesn’t work for most real-world scripts. Instead, you need the
capability to perform some sort of logic within the program, test conditions, and take alternative
measures if certain tests fail. You may need to perform some operation on each file in a directory
or back up only selected files. Shell scripting languages offer a variety of ways to test values and
then execute different commands based on the results of the tests. All of these things fall under the
concept of controlling how your scripts run.

This chapter covers:

QO Advanced variable referencing, useful for conditionals and iteration
O Iterating with the for and foreach statements

0 Using if-then-else statements to test values and execute different commands based on
the results

0 Testing for a variety of values using the switch-case statements

0 Looping while a condition is true

Referencing Variables

Chapter 2 introduced the concepts of variables, named data holders. Each variable can hold a value,
which you can later reference by placing a dollar sign in front of the variable name. When it comes
to looping and conditional tests, however, you often need more options for referencing variables.
This section shows you some of those options.

The Bourne shell, along with bash and ksh, provides another means to reference the value of a
variable. The normal means is with a dollar sign:

Svariable name

Chapter 3

Try It Out

86

This example references the value of the variable variable_name. If you have not set a value into
variable_name, you will get no value. This is not an error.

You can also use curly braces to reference a variable’s value:
${variable name}

This method uses the curly braces to clearly delineate the start and end of the variable name. With just
the dollar sign, you have a clear separation for the start of the variable name but not the end.

This alternate method proves very useful if you want to place a variable with other text immediately
adjacent or, better still, when you need to append something to the value of the variable. For example, if
you have a variable with the value abc and want to output abcdef, the natural way to do this would be
to place the variable name next to the text def. Unfortunately, the following would output nothing
except for a new line:

myvar=abc

echo $myvardef # nothing

Note how the shell sees nothing to separate the name of the variable, myvar, from the text def. Thus, the
shell interprets $myvardef as referencing a variable named myvardef. If you have not set this variable,

which is likely, then myvardef will hold nothing.

But if you use the $ {variable_name} alternate format, you can then make a clean separation between
the variable name and the remaining text:

${myvar}def

Referencing Variables

To better understand how to reference variables, try the following script:

Set the initial value.
myvar=abc

echo "Test 1 ======"

echo $myvar # abc

echo ${myvar} # same as above, abc

echo {S$myvar} # {abc}

echo "Test 2 ======"

echo myvar # Just the text myvar
echo "myvar" # Just the text myvar
echo "Smyvar" # abc

echo "\S$myvar" # Smyvar

echo "Test 3 ======"

echo Smyvardef # Empty line

echo ${myvar}def # abcdef

Controlling How Scripts Run

echo "Test 4 ======"
echo SmyvarS$Smyvar # abcabc
echo ${myvar}${myvar} # abcabc

echo "Test 5 ======"
Reset variable value, with spaces

myvar="a b c"
echo "Smyvar" # a b c
echo $Smyvar # abc

Save this file under the name var_refs. This script goes over the various choices for referencing variables.
When you run the script, you'll see output like the following;:

S sh var_refs
Tegt I =s====

abcdef

Test 4 ======
abcabc

abcabc

Test 5 ======
a b @
abc

Should any of the variable references appear confusing, check over the script, its comments, and the out-
put shown here. These are tricky concepts.

How It Works

For such a short script, this example is complex. You should go over the output one line at a time to better
understand how the shell treats these variables. For such a simple subject, this can get surprisingly tricky.

Test 1 shows the normal ways to reference the value of a variable. The script sets the variable myvar to
the value abc. The construct $myvar, familiar from Chapter 2, references the value of the variable. The
shell will replace $myvar with the value abc.

The construct $ {myvar} does the same thing. The shell will replace $ {myvar} with the value abc.

The construct {$myvar} combines normal curly braces, { and }, with the first construct, $myvar. As

before, the shell will replace $myvar with the value abc. The echo command will output the curly
braces, creating {abc}.

87

Chapter 3

88

In most cases, the construct {$myvar} is a typo. The user likely intended this to be ${myvar} but got the
leading curly brace positioned incorrectly.

Test 2 shows what happens if you skip the dollar sign with the variable name. Without the dollar sign,
the text myvar is just a plain string of text. There is nothing special about myvar, even though you
named a variable with the same string of text.

The construct myvar is just the text myvar. So is the construct "myvar", which will appear as myvar. The
quotes delimit the text. In both these cases, you can guess that the user forgot to include the dollar sign
to reference the value of the myvar variable rather than the plain text myvar.

The construct "$myvar" outputs abc because $myvar references the value of the variable myvar. The
quotes merely delimit the text. So how can you get the dollar sign to appear? That’s what the next con-
struct, "\ $myvar", does.

The construct "\ $myvar" outputs what looks like a variable reference: $myvar. The backslash, \, acts as
a special character, telling the shell to use the following special character, $, as a character instead of a
means to reference a variable. That is, \ $ refers to a plain character $, removing the special meaning $
normally holds. Thus, the ending textis "$" and "myvar", or $myvar when output.

The \'$ format is called escaping the dollar sign. You can also use a backslash to escape other characters,
such as quotes needed inside a quoted text string. Additional examples of escaping appear throughout
this book.

Test 3 shows how to combine the values of more than one variable into the same output.

The construct $myvardef references the value of the variable myvarde£, which this script has not set.

The echo command outputs a new line with no text because there is no value for the variable. In most
cases, however, this construct was meant to output the value of the variable myvar, with the string of

text def, making abcdef.

The construct $ {myvar}def shows how to do just that. This construct combines the value of the myvar
variable, abc, with the string of text def, making abcdef.

If you want a space between the variable values, none of this will be an issue. Just place one variable ref-
erence, a space, and then another variable reference.

Test 4 continues the use of placing data immediately after a variable by using two variables. Both lines
output the same text: the value of the myvar variable appearing twice.

The first construct, $myvars$myvar, handily provides two dollar signs, each of which can delimit the
construct. This way, the shell knows that the second dollar sign starts another variable reference, in this
case to the same variable.

The second construct, $ {myvar}s{myvar}, makes a clearer separation between the two variable refer-
ences. Use this format to be most clear should you need to combine variable values.

Controlling How Scripts Run

It may not be clear right now why you’d want to combine variable values with text or other variables,
but this is used quite a lot in scripting. Imagine writing a backup script, for example. If you have the
name of a file in the variable filename, you can construct a backup file name using, for example,

$ filename.bak, with the . bak extension, short for backup. See the examples in the Looping over Files
section for this construct.

This is one of the differences between script-oriented languages such as shell scripting languages and tra-
ditional programming languages such as C, C++, and Java. Scripting languages tend to allow you to
place the text you want in your script. Bare text, such as def, is assumed to be text. Variables are denoted
with a special syntax, $ in shell scripts. With traditional programming languages, on the other hand, bare
text is assumed to be the names of variables. Any text you want to output must be delimited by quotes.
This isn’t a hard-and-fast rule, but it shows some of the assumptions behind each type of language.

Test 5 shows the difference between using quotes and plain references. This test sets the myvar variable
to a new value. It still holds a, b, and ¢, but this time the test sets the values with spaces in between each
element. The quotes on the line that sets myvar to the new value preserve the spaces.

When referencing these variables, you can see the difference between using the quotes, which preserves
spaces, and not using them, which treats all the values as individual elements. Because shell scripting
was designed around the command line, each element is placed with a single space to separate it from
the next element.

The first construct, "$myvar", preserves the spaces in the value of myvar. The second construct, $myvar,
which leaves the bare values on the command line, does not preserve the spaces.

If some of this is confusing, don’t worry. The best way to learn the intricacies of shell scripting is by
experimenting. You can vary the var_refs script to see how different constructs work together. In addi-
tion, you can experiment with later scripts to see what works and what doesn’t.

These variable constructs are useful when you start to test variable values and use variables to control the
flow of how your scripts run. One of the most common means to control the flow in a script is through
looping.

Looping and Iteration

Looping is the process of repeating the same script elements a given number of times. Looping works
best when applied to one of the following tasks:

Q Performing the same operation on a number of files

Q Performing an operation for a fixed number of times, such as trying to reconnect to the network
three times (and then giving up if the connection cannot be re-established)

Q Performing an operation on a given number of items

89

Chapter 3

For all of these iterative tasks, you can use the shell for loop. The basic syntax of the for loop is:

for variable in list_of_ items
do

commandl

command?2

last_command
done

You need to provide the name of a variable. The shell will set the variable to the current value on each
iteration through the loop. The commands between the do and the done statements get executed on
each iteration.

The 1ist_of_items differs depending on what you want to use for iteration, such as a list of files.

Looping over Files

Quite a few shell scripts need to loop over a list of files. Backup scripts, for example, might check each
file in a directory to see if the file is newer than the last backup. If the file has been modified since the
last backup, then you may want a script to back up the file.

The basic syntax for looping over a number of files is to use the for loop with a list of items that resolves
to the files. For example:

for filename in *
do
commandl
command?2

last_command
done

In this example, the * resolves to the list of files in the current directory. The for loop then iterates over
each file, setting the variable filename to the name of the current file.

Try It Out Making a Primitive Is

You can use this example technique to write a primitive 1s script for listing file names. Enter the follow-
ing script and name the file my1s:

Example to look at files in a directory and
print out the file names.

for filename in *
do

echo $filename
done

20

Controlling How Scripts Run

When you run this script, you should see the names of the files in the current directory. For example:

S sh myls
Makefile
backupl
case_os
check_csh
counterl
counter?2
csh_var
error
find_shells
find shells?2
myls

myls2
nested_forl
readpipe.tcl
return0
returnl

Your output will differ based on the files in your directory.

How It Works

The for loop in the my1s script loops, or iterates, over each item in the list. This list is identified by an
asterisk, *, which does nothing magic. As covered in Chapter 1, the asterisk is called a wildcard or a
glob. The shell expands the asterisk to the names of all the files in the current directory.

Note that hidden files— that is, files with names that start with a period — are not included in the * glob.
The for loop iterates over all the file names in the current directory. The block of commands between
the do and the done uses the echo command to output the file name. Thus, the my1s script outputs one

file name per line.

You can place as many commands as you need between the do and the done, or as few, including no
commands.

Try It Out A More Extensive Is

The previous example uses the echo command to print out each file name. You can modify this script to
print out the file’s size along with its name by switching to a different command. Enter the following
script and save it under the name my1s2:

Another example to look at files in a directory and
print out the file names.

for filename in *

do
Show the amount of bytes in each file
with the file name. The wc command

91

Chapter 3

outputs both.
wc -c $filename
done

When you run this script, you should see output like the following:

S sh myls2
24 Makefile
187 backupl
412 case_os
232 check_csh
150 counterl
179 counter2
61 csh_var
8 error
764 find_shells
262 find shells2
121 myls
235 myls2
214 nested_forl
395 readpipe.tcl
7 return0
7 returnl

Your output will differ based on the files in your current directory.

How It Works

92

This script iterates over the same type of list, the names of all the files in the current directory. Between
the do and the done, the my1s2 script still has just one command (plus the comments). The command,
however, differs. The myls script used the echo command. The my1s2 script uses the we command,
short for word count. The we command can count the number of bytes, characters, and lines in a file, as
well as approximate the number of words. (The approximation comes from the fact that wc uses a simple
set of rules to determine where words start and end. The we command does not understand natural text
in English or any other language; it just uses rules to determine word boundaries.)

Typically, the we command outputs all the counts it generates. With the -c option, however, wc outputs
only the count of the bytes in the file, not the characters or lines. With the -c option, we outputs the
byte-count, or size, of each file and the file name. Thus, the my1s2 script does not need to call the echo
command.

Iterating over all the files in a directory is a very common operation in shell scripts.

As another example, you can use the for loop to help create a backup script. Backup scripts save a copy
of files to some form of external storage. In most larger environments, administrators run incremental
backups. With incremental backups, administrators first perform a full backup of all files and then selec-
tively back up only those files that have changed since the last full backup. Typically, administrators
start the process again every so often, such as performing a full backup every month or every week.
Every day in between, however, administrators perform incremental backups.

Chapter 13 covers more on administrative tasks such as backups.

Controlling How Scripts Run

Try It Out Creating a Simple Backup Script

You can create a simple backup script using a for loop:

Example backup script, for files with names
ending in .doc
#

for filename in *.doc

do
echo "Copying S$filename to $filename.bak"
cp $filename $filename.bak

done

Save this script under the name backupl. When you run this script, you should see output like the
following:

$ sh ../backupl

Copying 2005_Q1.doc to 2005_0Q1.doc.bak

Copying 2005_Q2.doc to 2005_Q2.doc.bak

Copying business_plan.doc to business_plan.doc.bak
Copying ent_whitepaper.doc to ent_whitepaper.doc.bak
Copying lin_proposal.doc to lin_proposal.doc.bak

Copying lin_stmt_of_work.doc to lin_stmt_of_ work.doc.bak
Copying proposall.doc to proposall.doc.bak

Copying world_takeover.doc to world_takeover.doc.bak

Note that the output on your system will differ based on what files are located in your current directory.

How It Works

The backupl script loops through all the files in the current directory with names ending in . doc, pre-
sumably word processor files. The commands in the for loop copy each file to a file with the same
name but with an extra . bak extension. Note that this will result in files with names in the format of
filename.doc .bak, a sort of double extension. For the most part, shells don’t treat the file name exten-
sion as a special part of the file name. So in the backupl script, the £ilename variable holds the name
of the file, such as 2005_0Q2 . doc, rather than 2005_0Q2.

Note that a real backup script would likely need to verify whether the item was a file or a directory and

perhaps check when the file was last modified. In shell scripting terms, this means you need to combine
the loop with conditionals to verify whether a file is one the script should back up or not. See the section
Checking Conditions with if for more on conditionals.

Looping for a Fixed Number of Iterations

In addition to looping over a set of files, you can write scripts that loop for a fixed number of iterations.
The previous example scripts have allowed the shell to fill in the 1ist_of_items from a listing of files.

You can also indicate specific items to iterate over. For example, to teach an expensive computer to
count, you can set up a for loop like the following;:

93

Chapter 3

for i in 12 3456 7 8 9 10
do

done

In this example, the for loop will set the variable i to each of the values 1,2, 3,4,5,6,7,8,9, and 10,
performing whatever commands are in the do-done block.

Try It Out Counting to Ten

For example, create the following script and save under the name counter1:
Counts by looping for a fixed number of times

for i in 12 3 456 7 8 9 10

do
echo -n "...$1i"
done
echo # Clean up for next shell prompt

When you run this script, you will see the following output:

$ sh counterl
1...2...3...4...5...6...7...8...9...10

How It Works

This script uses the same for loop syntax but places specific values for the list of items to iterate over,
where the previous scripts used the shell and the wildcard, or globbing, mechanism of the shell.

In each iteration through the loop, the echo -n command outputs the current item, such as 1, 2, or 3. The
-n command-line option tells the echo command to place the output on one line. The final echo com-
mand prints out a new line so that the next shell prompt won’t appear immediately after the 10.

You can place the for loop and the do statement on the same line, but you must separate the two ele-
ments with a semicolon as if they were separate commands (which in a sense, they are). For example:

Counts by looping for a fixed number of times
Note do on same line requires semicolon.
for i in 1 2 3 45 6 7 8 9 10; do

echo -n "...$i"

done

echo # Output newline

The resulting output will be identical to the previous example.

94

Controlling How Scripts Run

As you can guess from the way the example scripts specify the values to iterate over, there is nothing
stopping you from making a for loop count backward. For example:

Counts backwards

for 1 in 10 9 8 76 54 3 2 1

do
echo -n "...$1i"
done
echo # Output new line

echo "Blast off!"

Enter this script and save it under the name counter2. When you run this script, you should see the fol-
lowing output:

S sh counter2

...10...9...8...7...6...5...4...3...2...1
Blast off!

This is the same loop as before, only the values are listed in reverse order. There is also a final echo state-
ment making a space-flight reference. You can place values in any order.

The previous example shows a very efficient countdown to launching a spacecraft because there is no
pause between iterations. By the time you see the 10, you should also see the 1. The craft is ready to
launch. Aside from the remarkable efficiency, you may want to put some kind of wait into a script of this
type. You can do that with the s1leep command.

The sleep command takes one command-line argument, the length of time to sleep in seconds. (See the
online manuals on the s1eep command for using other units of sleep time.) For example:

sleep 5
This command causes the shell to wait for five seconds before going on to the next command.
Note that the sleep amount will not be exact, as your computer will be performing other work (running

other programs) at the same time. It should be at least five seconds, however, with an amount very close
to five seconds.

Try It Out Sleeping between lterations

You can try out the sleep command with a for loop script:

Counts backwards and waits each loop iteration.

for 1 in 10 98 76 54 3 2 1

do
echo -n "$i... "
sleep 1

done

echo # Output new line

echo "Blast off!"

95

Chapter 3

Enter this script and save it under the name sleep_counter. If you run this script, you should see the
following when the output is complete:

$ sh sleep_counter
10... 9... 8... 7... 6...5...4... 3... 2... 1...
Blast off!

Note that all the numbers appear with a second delay between each number.

How It Works

This script is the same as the counter2 script except for the use of the sleep command to impose a
delay between iterations. (In addition, the three periods are placed after the numbers rather than before.)

The numbers should appear slowly, with a second delay between 10. .. and 9. . ., for example. So you
will first see the following:

10, . -
After a second delay, you see:

10000 9o
This continues until you see the following:

10600 Yooo Booo Tooo Booo Booo Looo Jooo Booo dooo
After a final one-second delay, you see the blast-off message:

10... 9... 8... 7... 6...5...4...3...2... 1...
Blast off!

Looping Like a C Program — the bash Shell

The bash shell supports a for loop syntax that appears a lot like that of the C programming language.
The basic syntax is:

max=upper_limit
for ((i=1; i <= max ; i++))
do
commands. . .
done

This is like the C programming language, not the C shell.
In this example, the variable max holds the upper limit, such as 10. The for loop will iterate using the

variable i, where i starts at 1 and continues until it reaches a value greater than 10. The i++ syntax
refers to incrementing the variable 1.

96

Controlling How Scripts Run

Some things to note in the syntax include:

O Youneed two sets of parentheses on each side, ((and)).
Q You reference the loop iteration variable, i in this case, without the $.
Q This syntax is supported by the bash shell, although you may find it works with the Bourne

shell on systems where bash also provides the Bourne shell, such as Linux and Mac OS X.

If you are familiar with C programming, then this syntax will appear like a C for loop, with some modi-
fications for use in a shell. Otherwise, you probably want to avoid this syntax.

Try It Out Looping Like C Programs

Enter the following script and name the file c_for:

C-language-like for loop.
Must be run with bash.

max=10

for ((i=1; i <= max ; i++))
do

echo -n "$i..."
done

echo

When you run this script in a bash shell, you will see the following output, like that of the previous
scripts:

S bash c_for
1...2...3...4...5...6...7...8...9...10...

If you run this script with the Bourne shell, sh, you may see an error like the following:

$ sh c_for
c_for: 6: Syntax error: Bad for loop variable

How It Works

The double-parenthesis syntax allows for a finer grain of control over a for loop, with much more com-
pact code than trying to create the same loop using the Bourne shell syntax. Another advantage is that
you do not need a list of all the items to iterate. Instead, you just need a start value and an end value

(1 and 10, respectively, in the example). You'll often find it is far easier to come up with start and end
values than it is to create a full list of items.

On the downside, however, you must run your script with bash. The bash shell isn’t available on all sys-
tems, so you may have a problem. In addition, while this syntax requires bash, some bash-ized versions of
sh will also support this syntax. Because of the uncertainty, you probably want to avoid using this syntax.

97

Chapter 3

Looping in the C Shell

The C shell doesn’t support the for loop but does support something similar, a foreach loop. The syn-
tax for foreach is:

foreach variable (list_of_ items)
commandl
command?2

last_command
end

The loop executes once for each value in the list of items. On each iteration, the shell sets the variable to
the current value from the list of items.

Some differences from the Bourne shell for syntax include:

O Use foreach instead of for.

There is no in.

Q
O There is no do to start the block of commands.
QO Instead of done, the C shell uses end.

Q

The list of items must be enclosed within parentheses.

Try It Out Creating a C Shell foreach Loop

The following example shows the C shell foreach loop. Enter this script and save it under the name
myls_csh:

C shell foreach

foreach filename (*)
echo $filename
end

When you run this script, you will see a listing of the files in the current directory:

$ csh myls_csh
eden. txt

mail

Mail
motif2.txt
myls_csh
oracle.detect
PL2BAT.BAT
rpmlast
signature.asc
tclbookl. txt
tmp
vpkg-provides.sh

This list will differ based on which files are located in your current directory.

98

Controlling How Scripts Run

How It Works

The myls_csh script provides the C shell equivalent to the Bourne shell syntax in the myls example
script. The foreach statement is nearly the same as the Bourne shell for statement. In the myls_csh
script, the shell sets the variable £ilename to the name of a file in the directory on each iteration.

This syntax is supported only by the C shell, not the Bourne shell.

If you try to run this script from the Bourne shell, you will see the following output:

S sh myls_csh
myls_csh: line 3: syntax error near unexpected token ° (*'
myls_csh: line 3: “foreach filename (*)'

Nested Loops

You can nest for loops. Nope, this isn’t about purchasing a really cool High Definition plasma television
and staying at home eating popcorn. In shell script terms, nesting means putting inside. So nested for
loops are loops within loops.

Try It Out Nested for Loops

For example, enter the following script and save the file under the name nested_for:

Nested for loop

for i in 1 2 3 456 7 8 9 10

do
echo -n "Row $i: "
for jin 1 2 3 456 7 8 9 10
do
sleep 1
echo -n "S$j "
done
echo # Output newline
done

When you run this script, you will see the following:

S sh nested_for

Row 1: 1 23 4567 89 10
Row 2: 1 2 3456 7 89 10
Row 3: 1 23 4567 89 10
Row 4: 1 23 4567 89 10
Row 5: 1 2 3456 7 8 9 10
Row 6: 1 23 4567 89 10

29

Chapter 3

Row 7: 1 2 3 456 7 89 10
Row 8: 1 23 4567 89 10
Row 9: 1 23 456 7 89 10
Row 10: 1 2 3 456 7 8 9 10

Note that this output will appear one item at a time, as this script runs slowly. Put on some spacey music
and enjoy the numbers appearing on your screen.

How It Works

This example breaks no new ground. It just shows that you can place for loops within for loops. Just
remember a few important points:

Q Use different variables in each loop, or the loops will likely conflict with one another.

QO You need to keep the do-done code blocks correct. Each do needs a done. The outer loop do-
done block must enclose the inner block entirely.

QO Note how indenting the script can really help separate the loops.

You can nest loops as deeply as you need; just follow these rules for each for loop.

Checking Conditions with if

The Bourne shell i f statement checks whether a condition is true. If so, the shell executes the block of
code associated with the if statement. If the condition is not true, the shell jumps beyond the end of the
if statement block and continues on. Only if the condition is true will the shell execute the block.

The basic syntax of the sh if statement follows:

if (condition_command) then
commandl
command?2

last_command
fi

If the condi tion_command resolves to a true value (see the section What Is Truth? for more on truth and
falsehood), then the shell executes the commands in the block: commandi1, command2, and so on to the
last_command in the block. Note how if statements end with a £i (if spelled backward). The £1i ends
the block of commands.

The condi tion_command includes numerical and textual comparisons, but it can also be any command
that returns a status of zero when it succeeds and some other value when it fails.

100

Controlling How Scripts Run

The if statement is a part of just about every programming language. If you are not familiar with an i £
statement, however, think of the following general-purpose tasks:

Q If a file has been modified since the last backup, then back up the file.
Q If the Oracle database is not running, then send an email message to an administrator.

Q If anew version of a software package, such as the Mozilla Firefox Web browser, has been
released, then update the software package.

If you were assigned any of these tasks — that is, writing a shell script to perform these functions —you
would use an if statement. If you are tasked with assignments like these, however, you may need to
reword the assignments. For example, the following tasks mirror those from the preceding list but don’t
use that handy word if:

0 Only modify those files that have been modified since the last backup.
QO Whenever the Oracle database is not running, send an email message to an administrator.

Q Update all applications for which a new package is available.

These task statements don’t include i £, but if you think about it for a while, the i f statement fits right
in. All of these statements involve a condition. If the condition is true, then the script is supposed to take
some action. This type of task fits well with the if statement.

Another good use for an if statement (or a case statement, covered below) is a script that tries to figure
out the proper commands to use on different operating systems. For example, if a script is running on
Windows, the file copy command will be copy. If the script is running on Unix, then the copy command
will be cp. Handling operating system issues is another good use for an i f statement.

Whenever you have a task like these, think of the if statement. The What Is Truth? section later in this
chapter includes examples to show how to create if statements in your scripts.

Or Else, What?

In addition to the normal if statement, you can extend the if statement with an else block. The basic
idea is that if the condition is true, then execute the i f block. If the condition is false, then execute the
else block. The basic syntax is:

if (condition_command) then
commandl
command?2

last_command
else

commandl

command?2

last_command
fi

101

Chapter 3

Again, the entire statement ends with a £1, if spelled backward. If the condi tion_commandis true, then
the shell executes the first block of commands. If the condi tion_command is not true, then the shell exe-
cutes the second block of commands.

There is also an elif that combines the else with a nested if statement. See the related section later in the
chapter for more on elif.

What Is Truth?

By convention, Unix commands return a command result of 0 (zero) on success. On errors, most com-
mands return a negative number, although some return a positive number such as 1 (one). Because the
Bourne shell i f statement is tied to running a program and testing for success, it only makes sense that 0
be considered true and 1, or any nonzero number, false. Commands return these numbers when they exit.

Try the following scripts to get an idea of how the if statement works, and especially the focus on run-
ning commands.

Try It Out Determining Truth in Scripts
You can simulate a command returning a value by calling the exit command. The exit command ter-
minates your script. You can also pass a number as a command-line argument to the exit command.
This number will be the number the shell sees as coming back from your script. Therefore, this is the
number the if statement will examine.
So you can make a script that returns a success code, 0, with just the exit command:
exit 0
Type in this very long script and save it under the file name returno.
You can also make a script that returns a failure code, 1, or any nonzero number you want to use:
exit 1
Type in this very long script and save it under the file name returni.
You now have two scripts, one to create a true condition and one to create a false condition.
Enter the following script and save it under the file name trutho:
if (sh return0O) then
echo "Command returned true."
else

echo "Command returned false."
fi

When you run this script, you should see a report of a true value:

$ sh trutho
Command returned true.

102

Controlling How Scripts Run

How It Works

The trutho script uses the if statement with the command sh return0. If this command returns true,
then the script outputs the line Command returned true. If the command returns false, then the script
outputs the line Command returned false. In this case, that command is sh return0. The sh command
runs the Bourne shell with the name of a script, return0, and the return0 script calls the exit com-
mand with an exit code of 0, or success. Thus, sh return0 is a command that returns 0, or success.

So wrapping this call up, the if statement resolves to true.
You can test the opposite result. Enter the following script and save it under the name truthi:
if (sh returnl) then
echo "Command returned true."
else
echo "Command returned false."

fi

Notice how only one line changed: the if statement at the beginning of the script. Instead of calling sh
returno, this test calls sh returnl, running the returnl script.

When you run this script, you will see a failure message:

$ sh truthl
Command returned false.

This is because the return1 script calls exit with a command-line argument of 1, a nonsuccess exit code.

Try out these two scripts until you are comfortable with the way shells handle i f statements. Just about
every programming language has an if statement. Shells, however, by calling on a program to handle
the condition, can appear odd to anyone who has a programming background. That’s because the i £
statement usually compares variables in other programming languages instead of running commands.

Note that you can run the test command to compare variable values. See the section Testing with the
test Command for more on this topic.

In addition to the return0 and returnl scripts shown here, Unix and Linux systems include two spe-
cial programs, true and false, that return a true status and a false status, respectively. These are actual
programs on disk (usually in /bin). Some shells include true and false as built-in commands. Bash,
for example, does this.

Try It Out True and False

You can try out the true and false commands with the if statement:

if (true) then

echo "true is true"
else

echo "true is false"
fi

103

Chapter 3

if (false) then

echo "false is true"
else

echo "false is false"
fi

Save this script under the name truth_t£. Run the script, and you will see:

$ sh truth_tf
true is true
false is false

With output like this, you get some reassurance that the universe is indeed operating correctly, at least
the Unix and Linux parts.

How It Works

The truth_tf script includes two if statements. One if statement checks the value of the true com-
mand. The other checks the false command. As you’d hope, the true command is indeed considered
true. And the false command is indeed considered false.

Remember that the i f statement wants to run a command. The i f statement then examines the results
of the command to decide whether the results were true. You can then use i f with different commands
to see the results.

For example, you can call the make command, which is used to control the compiling of software appli-

cations, especially C and C++ programs. The make command will return a success exit code (0) if every-
thing went fine and make successfully built whatever it was supposed to build. The make command will
return a failure exit code on any errors.

Note that you may need to install the make command if the command is not available on your system.
See your system documentation for more on installing software packages. The following section assumes
you have installed make.

Try It Out Testing Commands

Try testing the make command with the following script:

if (make) then

echo "make returned true."
else

echo "make returned false."
fi

When you first run this command, you will likely see the following output:

$ sh truth_make
make: *** No targets specified and no makefile found. Stop.
make returned false.

104

Controlling How Scripts Run

This is because the current directory has not yet been set up for the make command. To do so, you need
to create a file named Makefile. Enter the following and save it to a file named Makefile:

all:
echo "make all"

Note that it is very important to place a tab character at the start of the line with the echo command. If
you don’t, make will fail.

Now, you can run the truth_make script and see the following output:

$ sh truth_make
echo "make all"
make all

make returned true.

How It Works

The Makefile holds a set of rules that tells the make command how to compile and link your application.
The example here merely creates a dummy Makefile that performs no compiling.

Think of this example as an idea generator should you use the make command at your organization.

But because the example Makefile has a rule named all (something the make command looks for),
then make reports that it performed all commands as instructed. This, then, is a success status.

Notice how make, by default, outputs the commands it will run—echo "make all" in this case—
and then make actually runs the command, resulting in the second line of output, make all. The
truth_make script then outputs the fact that make returned true. This is a lot for such a short script!

If your system does not have a make command, you will see output like the following;:

$ sh truth_make
truth_make: line 1: make: command not found
make returned false.

The first line of the output comes from the shell, telling you that the command make was not found. The
second line of the output comes from the script, truth_make. The call to the make command resulted in
an error. In other words, the command resolved to a false value. Note that this error and the failure code
come from the shell, not from make (which does not exist on this system).

As mentioned previously, you can call any command as the condition for an i f statement. If the command
returns 0, then the result is considered true. Otherwise, the shell considers the result false. Most commands
return 0 if the command succeeded, even if the command does not really perform a test or comparison.

For example, you can call the 1s command as an if condition, as the following shows:

if (1ls) then
echo "ls is true"
else
echo "ls is false"
fi

105

Chapter 3

The 1s command will succeed so long as it can list the files specified. (With no command-line argument,
1s lists the files in the current directory.) Thus, 1s, as used in this example, should succeed.

If you try an example like this, however, you’ll soon see a problem. The 1s command wasn’t designed
for testing. Instead, 1s was designed for output. Thus, you'll get a listing of the files in the current direc-
tory as part of this if condition. In most cases, however, you’d like the if conditions to remain silent,
outputting no data. To help with this, you can redirect the output, as explained in the next section.

Redirecting Output

Most Unix and Linux commands output their results. The 1s command, for example, outputs the listing
of the files as requested by you, the user. Use a greater-than sign, >, to redirect the standard output of a
command to a given file. The basic syntax is:

command > output_file
You can try this with the 1s command. For example:
$ 1s > listing.txt

This command sends the output of the 1s command into the file 1isting. txt. If the file doesn’t exist,
the shell creates the file. If the file already exists, the shell truncates the file. When the command com-
pletes, you should be able to view the contents of the file 1isting. txt, which should hold the same
data as if the 1s command sent its output to the screen.

To get rid of a command’s output, redirect the output to /dev/null. You can try this at the command line:

$ 1ls > /dev/null
3

The system should respond with another prompt with no output from 1s. The greater-than sign, >, redi-
rects the output of the command (1s in this case). Here, the > redirects the output of the 1s command to
the file /dev/null, often called the null device or the bit bucket. That’s because /dev/null is a special file
that the operating system considers a device. In this case, /dev/null consumes all input sent to it, kind
of like a black-hole star.

The /dev directory is a special directory that holds what are called device files or device drivers, special
code that interfaces with devices such as hard disks, DVD drives, USB keychain flash drives, and so on.

Chapter 8 covers more on redirecting the standard input, output, and error files. For now, just treat this
command as sending the output of the 1s command to the null device, which consumes all the bytes

sent to it.

Note that you can also capture the output of a command into a variable. See the section Capturing the
Output of Processes in Chapter 9 for more on this topic.

To get a taste of redirecting, try the following example, which combines redirection with the 1s com-
mand inside an if-then conditional statement.

106

Controlling How Scripts Run

Try It Out Redirecting Output

Enter the following script and save it as the file truth_1s:

if (1s > /dev/null) then
echo "ls is true"
else
echo "ls is false"
fi

When you run this script, you will see:

S sh truth_ls
1s is true

How It Works

The 1s command is true. So are most commands, unless they detect an error. In the truth_1s script,
however, the if condition has more than just the 1s command. The command runs 1s but sends all
the normal output of 1s to the file /dev/null:

ls > /dev/null

This command should return true because in virtually all cases, you can list the contents of the current
directory. Unlike the previous example with the 1s command, in an if-then conditional, you should
not see any output of the 1s command unless an error occurs.

You can force 1s to generate an error by asking 1s to list the contents of a directory that does not exist.
For example:

S 1ls /fred > /dev/null
ls: /fred: No such file or directory

Unless your system has a directory named /fred, 1s will generate an error.

If you are new to redirection in commands, this command also raises some questions. Didn’t you just
redirect the output of the 1s command to /dev/null? If so, why do you see 1s outputting an error mes-
sage? This is the result of a very old tradition in Unix (and brought into Linux and Mac OS X). Programs
in Unix, all the way from ancient versions of Unix to modern versions today, have three standard files
associated with each program. In most cases, these are not really files but instead devices, represented in
the operating system as special device files unless redirected.

These files are:

] stdin, or standard input, is the keyboard.
Q stdout, or standard output, is the shell window, or screen.

Q stderr, or standard error, is the shell window, or screen. Only error messages should be written
to stderr.

All of these standard files can be redirected to real files or to other programs.

107

Chapter 3

Note how programs have two channels for output: stdout for the normal output and stderr for errors.
The previous example used > to redirect standard output for the 1s command, not standard error. You
can redirect standard error with 2> (in sh, ksh, and bash). For example:

$ 1s /fred > /dev/null 2> /dev/null
$

This example redirects the normal output from 1s, as well as the error messages.

You typically don’t want to redirect error messages to /dev/null. You may be hid-
ing something very important.

See Chapter 8 for more on the topic of redirecting program output and input, as well as how to redirect
standard error for csh and tesh.

You can use these redirection techniques to create a script that tests for the existence of various shells.

Try It Out Checking for Shells

The following script tests to see which of the most common shells you have installed. Enter this script
and save it under the name £ind_shells:

e
echo "Checking your command path for shells..."

if (sh -c exit > /dev/null 2> /dev/null) then
echo "sh found."

else
echo "sh NOT found."

fi

if (bash -c exit > /dev/null 2> /dev/null) then
echo "bash found."

else
echo "bash NOT found."

fi

if (ksh -c exit > /dev/null 2> /dev/null) then
echo "ksh found."

else
echo "ksh NOT found."

fi

if (csh -c exit > /dev/null 2> /dev/null) then
echo "csh found."

else
echo "csh NOT found."

fi

108

Controlling How Scripts Run

if (tcsh -c exit > /dev/null 2> /dev/null) then
echo "tcsh found."

else
echo "tcsh NOT found."

fi

if (zsh -c exit > /dev/null 2> /dev/null) then
echo "zsh found."

else
echo "zsh NOT found."

fi

if (ash -c exit > /dev/null 2> /dev/null) then
echo "ash found."

else
echo "ash NOT found."

When you run this script, it should display output similar to the following;:

S sh find_shells

Checking your command path for shells...
sh found.

bash found.

ksh NOT found.

csh found.

tcsh found.

zsh NOT found.

ash found.

Note that your results will differ based on which shells you have installed.

How It Works

The £ind_shells script repeats a very similar i f statement for each of the shells it checks. Each check
tries to run the shell with the -c option. The -c option, supported in all the shells tested here, runs com-
mands from command-line arguments. So a -c exit command line tells each shell to run the exit
command. The exit command tells the shell to exit. That is, you start up a shell program, asking it to
exit right away.

Put together, this runs commands like the following:
sh -c exit
csh -c exit

ksh -c exit

Now, if your system does not have one of these shells, you will see an error. For example, if you do not
have the Korn shell installed, you will see the following (typing in the command at the shell prompt):

S ksh -c exit
bash: ksh: command not found

109

Chapter 3

If your system does have a shell installed, you will see output like the following:

$ bash -c exit

$

So if the command works, the command quits right away. If the command fails, you get an error. Put the
command into an if statement and you have a test for success (truth) or failure (falsehood).

Note that there are a few issues with this approach to finding shells, including the fact that you may have
a shell installed but not in your shell’s command path. Don’t worry about these other issues. The purpose
of these examples is to show if statements, not handle all possible conditions.

If a shell is not installed on your system, however, you shouldn’t have to slog through a number of error
messages. You can get rid of all program output, if you'd like.

The command passed to the if statements redirects the standard output of each command to /dev/null.
If the command cannot be found, the shell generates an error, which would normally be sent to standard
error. The command passed to the if statements, however, also redirects standard error to /dev/null.
For example, to test for the existence of the sh command, you can use:

$ sh -c exit > /dev/null 2> /dev/null
Note that this command is fairly worthless on the command line because all output gets redirected.

Inside an if statement condition, however, this works fine, relying on the error or success return code
from the command.

You can also try using the which command to test for a program’s existence. The which command displays
the full path to a command, if the command exists. If the command does not exist, the which command
generates an error. For example:

$ which ash

/bin/ash

$ which zsh

/usr/bin/which: no zsh in
(/usr/kerberos/bin: /usr/local/bin: /usr/bin:/bin:/usr/X11R6/bin:
/home2/ericfj/bin: /usr/java/j2sdkl.4.1_03/bin:/opt/jext/bin)

The which command in Mac OS X and the Cygwin utilities for Windows does not support returning a true
or untrue value. The which command always returns a true value. Thus, the tests in the £ind_shells

script generate falsely positive results.

Look at the repetition in the £ind_shells script. Such repetition cries out for using functions, the topic
of Chapter 10. You can also use other techniques to reduce the duplication.

Try It Out Finding Shells with a Shorter Script

If you combine the if tests in the £ind_shells script with the for loop, you can write a version of the
find_shells script that is much shorter. Enter the following script and name it find_shells2:

110

Controlling How Scripts Run

echo "Checking your command path for shells..."

for check _for in sh bash ksh csh tcsh zsh ash

do
cmd="$check_for -c exit"
if ($Scmd > /dev/null 2> /dev/null) then
echo "S$check for found."
else
echo "S$check_for NOT found."
fi
done

When you run this script, you should see output like that of the £ind_shells script. The main change
has been to shorten the script; the basic functionality remains the same.

How It Works

Note that the £ind_shells2 script is much shorter and easier to understand than the find_shells
script. The for loop in the script iterates over the list of shells. This eliminates the duplicated code in the
find_shells script.

The do-done block in the find_shells2 script builds up a command to check for the shell. As before,
the command is basically an attempt to run each shell, where the shell is one of sh, csh, and so on. The
cmd variable holds the full command to execute. If this command returns true, then the shell was
found. Otherwise, the shell was not found.

Using elif (Short for else if)

The Bourne shell syntax for the if statement allows an else block that gets executed if the test is not
true. You can nest if statements, allowing for multiple conditions. As an alternative, you can use the
elif construct, short for else if. The basic syntax is:

if (condition_command) then
commandl
command?2

last_command

elif (condition_command2) then
commandl
command?2

last_command
else

commandl

command?2

last_command
fi

111

Chapter 3

With the normal i f statement, and in this case, if the condi tion_command returns zero (true), then the
shell executes the commands underneath. In this case, if the condi tion_command returns a nonzero sta-
tus, or false, then the shell will jump to the next condition to check, the condition_command2.1f the
condition_command?2 returns zero, then the commands shell executes the commands underneath the
elif statement. Otherwise, the shell executes the commands underneath the else statement.

Theoretically, the e1if keyword is not needed, as you can nest if statements. But in most cases, if
makes your scripts easier to understand.

Try It Out Using elif

Enter the following script and name the file check_csh:

echo -n "Checking for a C shell: "

if (which csh > /dev/null 2> /dev/null) then
echo "csh found."

elif (which tcsh > /dev/null 2> /dev/null) then
echo "tcsh found, which works like csh."

else
echo "csh NOT found."

fi

When you run this script, you should see output that differs depending on which shells you have
installed. For example:

$ sh check_csh
Checking for a C shell: csh found.

If your system does not have csh but does have tcsh, you will see:

$ sh check_csh
Checking for a C shell: tcsh found, which works like csh.

And if your system has neither csh nor tcsh, you will see:

$ sh check_csh
Checking for a C shell: csh NOT found.

How It Works

The check_csh script tries to determine whether you have a C shell installed. Borrowing the tests from
the £ind_shells script, the check_csh script first checks for csh. If found, the script is done. If not
found, the script tests for tcsh, in case you have tesh installed but not csh. In this script, tcsh is consid-
ered good enough to act as csh because tesh is an extended version of the C shell. Finally, if all else fails,
the script outputs a message that csh was not found.

112

Controlling How Scripts Run

The script logic follows:
echo -n "Checking for a C shell: "

if (csh_is_present) then
echo "csh found."
elif (tcsh_is present) then
echo "tcsh found, which works like csh."
else
echo "csh NOT found."
fi

Note that this is not valid shell syntax, as csh_is_present and tcsh_is_present are placeholders for
the real testing code shown in the check_csh script.

You can include more than one elif construct within an if statement, as many as you need.

Nesting if Statements

As with for loops, you can nest if statements, although using the elif construct eliminates many of
the nested if statements that would be required without it.

If you nest too many 1if statements, your scripts will become very hard to read. After two or three
nested if statements, you should stop.

The following example shows how you can nest if statements.

Try It Out Nesting if Statements
Enter the following script and save it under the name truth_nested:
if (true) then

Only if the first condition is true will
we get here.

if (false) then
echo "The universe is wrong."
else
echo "All is well in the universe."
fi
fi

When you run this script, you should see the reassuring message that everything is okay:

$ sh truth_nested
All is well in the universe.

Rest assured, all is well.

113

Chapter 3

How It Works

This example contains two if statements. If the first i f statement resolves to true, then the shell will
execute the block inside the if statement. This block contains another i f statement. If that statement is
true (as well as the first statement, or the shell would not be executing this code), then the script executes
the then part. If the second if statement is not true, then the shell executes the else part.

In this example, the first test runs the true command (or shell built-in command). This command
returns true (always). So the shell executes the block of commands inside the if statement. The second
test runs the false command (or shell built-in command). This command should return false. If not,
the shell outputs a message questioning the foundation of existence.

Testing with the test Command

Because the Bourne shell i f statement was designed to work with commands, and because many scripts
need to compare values, the Bourne shell includes the test command. The test command forms a sort
of all-encompassing means to test files, values, and most everything else. Depending on the command-
line options you pass, test can compare values, check for file permissions, and even look for whether
files exist. The test command is normally implemented by the shell as a built-in command. But test
also exists as a program on disk, typically in /usr/bin.

To control what kind of test is performed, you must figure out the needed command-line options for the
test command to build up an expression to test. The test command uses the command-line options to
determine what comparisons to make. Then the test command exits and returns a 0 if the expression
tested was true and a nonzero value (1) if the expression was false. If test encounters an error, it returns
a number greater than 1.

To build up a test, you use the command-line options to specify how to compare values. For example:
test $Sx -eqg Sy

This example tests whether the value of x is equal to that of y, using the -eq command-line option. This
is assumed to be a numeric equality test. The shell will try to make numbers out of strings if needed.

Comparing Numbers

The following table shows the numeric test options. The variables x and y should have a numeric value,
obviously.

Test Usage

$x -eq Sy Returns true if x equals y

$x -ne $y Returns true if x does not equal y

$x -gt By Returns true if x is greater than y

$x -ge Sy Returns true if x is greater than or equal to y

114

Controlling How Scripts Run

Test Usage
$x -1t Sy Returns true if x is less than y
$x -le $y Returns true if x is less than or equal to y

Passing no test to test results in a false value.

Try It Out Testing Numbers

This Try It Out shows the syntax for various numeric comparisons. Enter the following script and save it
under the file name test_num:

Number test.

echo "**** Numeric comparisons."
x=5
y=10

echo -n "test -eqg: "
if (test $x -eqg Sy) then
echo "X = Y."
else
echo "X != Y. Expected."
fi

echo -n "test -eq: "
if (test $x -eqg $x) then
echo "X = X. Expected."
else
echo "X != X. "
fi

echo -n "test -eqg: "
if (test $x -eqg 5) then
echo "X = 5. Expected."
else
echo "X != 5. "
fi

echo -n "test -eqg: "
if (test $x -eqg "5") then
echo "X = \"5\". Expected."
else
echo "X != \"5\". "
fi

echo -n "test -ne: "
if (test $x -ne 5) then
echo "X != 5. "

115

Chapter 3

else
echo "X = 5. Expected."
fi

echo -n "test -ne: "
if (test $x -ne $y) then
echo "X != Y. Expected."
else
echo "X = Y."
fi

Note extra ! for "not".
echo -n "test -ne: "
if (test ! $x -eqg Sy) then
echo "X != Y. Expected."
else
echo "X = Y."
fi

echo -n "test -1lt: "
if (test $x -1t 5) then
echo "X < 5. "
else
echo "X = 5. Expected."
fi

echo -n "test -le: "
if (test $x -le 5) then
echo "X <= 5. Expected."
else
echo "X = 5."
fi

When you run this script, you should see the following output:

$ sh test_num
***x* Numeric comparisons.
test -eq: X != Y. Expected.

test -eg: X = X. Expected.
test -eq: X = 5. Expected.
test -eqg: X = "5". Expected.
test -ne: X = 5. Expected.
test -ne: X != Y. Expected.
test -ne: X != Y. Expected.
test -1t: X = 5. Expected.
test -le: X <= 5. Expected.

In each case, you get the expected results.

116

Controlling How Scripts Run

How It Works

The test_num script has a lot of if statements showing different types of numeric comparisons. The
tests compare x, set to 5, and y, set to 10.

The script outputs a message with the echo command prior to each if statement. This should help iden-
tify the test by printing out the test on the same line as the result. The script also shows the expected
result, true or false, of the test. For example:

echo -n "test -le: "
if (test $x -le 5) then
echo "X <= 5. Expected."
else
echo "X = 5."
fi

In this case, the variable x is indeed less than or equal to 5 because x was assigned to the value 5. The echo
statement that outputs the expected result includes the word Expected to make it very obvious when you
run this script which result you should see. Furthermore, the echo statements include a shorthand to indi-
cate the comparison, such as X =5 for X is equal to 5, X I=Y for X does not equal Y, and X <=5 for X is less
than or equal to 5. This shorthand text does not use the shell syntax for brevity in the output.

The tests in the test_num script show how to use the test command in general, as well as numeric com-
parisons. Look over all the if statements in the test_num script until you are confident of the results.

This is very important. The test command is used everywhere. You need to master this material.

In addition to comparing numbers, you can compare text strings.

Comparing Text Strings

The test command can also compare text strings. The test command compares text strings by compar-
ing each character in each string. The characters must match for the comparison to be true.

For some reason, text has been called strings or text strings in just about every programming language.
The usage comes from the idea of a text string as a string of characters (often of bytes), one after another.
The analogy doesn’t really hold up, but the terminology has.

You can compare based on the text string values or check whether a string is empty or not. The follow-
ing table shows the text string test options.

Test Usage

"$s1" = "$s2" Returns true if s1 equals s2

"$s1" 1= "$s2" Returns true if s1 does not equal s2
$s1 Returns true if sl is not null

Table continued on following page

117

Chapter 3

Test

$s1 -z

$s1 -n

Usage
Returns true if the length of s1 (the number of char-
acters in sl) is zero

Returns true if the length of s1 (the number of char-
acters in sl) is not zero

The following Try It Out shows the tests from this table in use in a shell script.

Try It Out

Enter the following script and save it under the name test_strings

118

String

Comparing Strings

test.

echo "**** String comparisons."
string="In Xanadu did Kublai Khan..."

echo -n "
if (test

test of a string: "
"$string") then

echo "We have a non-null \Sstring. Expected."

else
echo
fi

echo -n "
if (test
echo
else
echo
fi

echo -n "
if (test
echo
else
echo
fi

"\$string is null."

test of a string: "
Snotset) then

"How did \Snotset get a value?"

"\$notset has not been

test -z: "
-z S$notset) then
"Length of \S$notset is

"Length of \S$notset is

Note quotes around multi-word

echo -n "
if (test
echo
else
echo
fi

echo -n "

if (test
echo

else

test -z: "
-z "$string") then
"Length of \S$string is

"Length of \$string is
test -n: "

-n "$string") then
"Length of \$string is

set. Expected."

zero. Expected."

NOT zero."

string.

zero."

NOT zero. Expected."

NOT zero. Expected."

Controlling How Scripts Run

echo

if (test
echo

else

fi

echo

-n

echo

"Length of \S$string is zero."

"test =: "
"$string" = "S$string") then
"Strings are equal. Expected.

"Strings are not equal."

Tricky one. Notice the difference.

echo

if (test
echo

else

fi

echo

if (test
echo

else

fi

echo

if (test
echo

else

fi

echo

if (test
echo

else

fi

echo

-n

echo

-n

echo

-n

echo

-n

echo

"test =: "
"$string" = "$string ") then
"Strings are equal. "

"Strings are not equal. Expected"

"test =: "
"Sstring" = "In Xanadu did Kublai Khan...") then
"Strings are equal. Expected."

"Strings are not equal."

"test l=: "
"$string" != "In Xanadu did Kublai Khan...") then
"Strings are equal."

"Strings are not equal. Expected."
"test l=: "
"Sstring" != "$notset") then

"Strings are not equal. Expected."

"Strings are equal."

When you run this script, you should see the following output:

S sh
* *x k%
test
test
test
test
test
test

test_strings
String comparisons.

of
of

=78
=78
=il

a string: We have a non-null S$string. Expected.
a string: $notset has not been set. Expected.
Length of $notset is zero. Expected.

Length of $string is NOT zero. Expected.
Length of $string is NOT zero. Expected.
Strings are equal. Expected.

119

Chapter 3

test =: Strings are not equal. Expected
test =: Strings are equal. Expected.
test !=: Strings are not equal. Expected.
test !=: Strings are not equal. Expected.

As before, all tests work as expected.

How It Works

As with the previous example, the test_strings script contains a number of i f statements, each try-
ing out a different form of test. This test uses two variables: string, which is initialized to the start of
a poem, and notset, which is not set and hence has a null value.

As with the previous example, look over the tests to ensure you understand the material. Some of the
tests are tricky. For example, the following differs only by a space:

if (test "S$string" = "S$string ") then
echo "Strings are equal. "
else
echo "Strings are not equal. Expected"
fi

Each space can be very important when comparing text strings. Note also how empty strings have zero
lengths:

if (test -z S$notset) then

echo "Length of \$notset is zero. Expected."
else

echo "Length of \$notset is NOT zero."
fi

This may seem obvious, but many computer languages would generate an error instead, reserving a
zero length for strings that exist but have no value. With shell scripts, you can compare variables that
have never been set and so don’t exist.

Testing Files

In addition to the numeric and string tests, you can use the test command to test files. In fact, testing
files is the primary use of the test command in most scripts.

The following table lists the file options for the test commands.

Test Usage

-d filename Returns true if the file name exists and is a directory
-e filename Returns true if the file name exists

-f filename Returns true if the file name exists and is a regular file

120

Controlling How Scripts Run

Test

-1 filename

-s filename

-w filename

-x filename

These tests are described in Chapter 5.

Usage
Returns true if the file name exists and you have read
permissions

Returns true if the file name exists and is not empty
(has a size greater than zero)

Returns true if the file name exists and you have
write permissions

Returns true if the file name exists and you have
execute permissions

Using the Binary and Not Operators

Each of the test options introduced so far works alone. You can combine tests using the binary and
negation tests. The following table shows these add-in tests.

Test
!

-a

Usage

Negates the test.

Returns true if two tests are both true and false other-
wise. This is an AND operation.

With the negation test, !, you can negate any of the other tests. So, for example, if you use the -eq option
to compare two numeric values for equality, you can use the ! to negate the test, in other words to check

for inequality:

if (test
echo

else
echo

fi

! $x -eq Sy)
"x != vy. Expected."

In this example, the $x -eq $y tests if the value of x equals the value of y. The test will return true if the
values are equal and false if they are not equal. Placing an exclamation mark into the test converts the
test to return true if the values are not equal and false if they are equal. (Try this test in the

test_binary script following in this section.)

The options -a and -o form the binary test options. But even though these are listed as binary compar-
isons — that is, checks at the bit level —in most cases you can treat -a as a logical AND. Treat -0 as a

logical OR. For example:

121

Chapter 3

x=3
v=10

if (test $x -eqg $x -a Sy -eq $y) then
echo "x = x and y = y. Expected."
else
echo "false: x = x and y = vy.

fi
In this case, x equals x and y equals y. In addition:

if (test $x -eq $x -a Sy -ne $y) then

echo "x = xandy = y."
else

echo "false: x = x and y != y. Expected."
fi

This example tests whether x equals x and y does not equal y. This is obviously false.
The -a option takes precedence over the -o option if both appear in the same call to the test command.

You can try out the AND, OR, and negation tests with the following example. These tests tend to get
complex because each of these new tests requires an additional test (!) or tests (-a and -o) to run.

Try It Out Combining Tests

Enter the following script and save it under the name test_binary:
Binary test.

echo "**** Binary comparisons."
x=3
v=10

echo -n "test !: "
if (test ! $x -eqg $y) then
echo "x != y. Expected."
else
echo "false: x = y."
fi

echo -n "test -a: "
if (test $x -eq $x -a Sy -eq Sy) then
echo "x = x and v = y. Expected."
else
echo "false: x = x andy = vy."
fi

echo -n "test -a: "
if (test $x -eq $x -a $y -ne $Sy) then
echo "x = x and y = y."

122

Controlling How Scripts Run

else
echo "false: x = x and y != y. Expected."
fi

echo -n "test -o: "
if (test $x -eqg $x -o Sy -ne $y) then
echo "x = x or y != y. Expected"
else
echo "false: x = x or y != y is not true."
fi

When you run this script, you should see the following output:

S sh test_binary

**%% Binary comparisons.

test !: x != y. Expected.

test -a: x = x and y = y. Expected.

test -a: false: x = x and y != y. Expected.
test -0: x = x or y != y. Expected

How It Works

The binary tests often prove confusing, especially since these tests do not compare at the bit level.
The first test uses the negation operator, !, to negate an equals test:

if (test ! $x -eqg Sy) then
echo "x != y. Expected."
else
echo "false: x = y."
fi

In this case, x holds a value of 3 and y holds a value of 10. These two values are clearly not equal. Thus,
the -eq test will return false. The ! test, however, reverses this test, and so the final test will return true.

The second test insists that two equals tests must both be true, as does the third test. The fourth test uses
the OR operator, -o, to allow one or the other (or both) of two tests to be true.

Creating Shorthand Tests with [

In addition to the test command, you can write your tests using [, a shorthand for test. It may seem
weird, but [is actually a command. You can check this with the which command:

S which [
/usr/bin/ [

Note that] is not a command. The] is interpreted as a command-line argument to the [command.

Even though it is a command, [, like test, is often built into the shell. Shells such as bash, for example,
come with a built-in test and [commands. You can see this by using the type command in bash:

123

Chapter 3

$ type [

[is a shell builtin

$ type test

test is a shell builtin

Note that type is also a built-in shell command:

$ type type
type is a shell builtin

If you use type with the name of a command, you will see output like the following;:

S type rm
rm is /bin/rm

This indicates that rm, for removing, or deleting, files, is a command. Shells such as bash, csh, and tcsh
support aliases, where you can enter in an alias name and use the alias in place of a command. The type
command on bash can also tell you about whether a command is aliased or not. For example:

S type ls
ls is aliased to 'ls --color=tty'

The alias command lists all the aliases. When you run this command with bash, you will see output
like the following;:

$ alias

alias 1.='ls -d .* --color=tty"
alias 11='1ls -1 --color=tty'
alias 1ls='ls --color=tty'

alias vi='vim'

The output on your system may differ, depending on what aliases are set up in your shell.

With tesh or csh, the output will appear slightly different. For example:

$ alias

h history

1. ls -d .* --color=tty

11 ls -1 --color=tty

1s (ls -CF)

gtopia /opt/Qtopia/bin/gtopiadesktop
rm (rm -1)

vi vim

xcd cd !'*; echo -n ""[]2;Scwd"G"

As before, the output on your system may differ, depending on what aliases are set up in your shell.

124

Controlling How Scripts Run

Tying this together, you can write your tests using test or [, as you prefer. The syntax is:

if [test_options]
then
commands
else
commands
fi

Use square brackets, [and], around the test options. Note that this example places the then construct
on the next line. This is needed because this example skips the parenthesis. You can keep the then on the
same line if you include parentheses, but this syntax looks odd:

if ([test_options]) then
commands

else
commands

fi

The test_options should be the command-line options and arguments normally passed to the test
command. For example:

y=10

if [$x -eq Sy |

then

echo "X = Y."
else

echo "X != Y. Expected."
fi

The [syntax is supposed to make the tests easier to understand, but using [can be confusing because of
the way [was implemented as a command. Even so, this syntax is used in most scripts in place of the
test command.

Making Complex Decisions with case

Nested if statements work well, but as soon as you are confronted with a number of possible actions

to take, nested if statements start to confuse. You can simplify complex tests with the case statement.
Whenever you have a question or test with a number of choices and a script that requires specific actions
for each choice, you can use the case statement. The case statement is similar to a set of if-elif
constructs.

The syntax of the case statement follows:

case word in

valuel)
commandl
command?2

125

Chapter 3

last_command
value2)

commandl

command?2

last_command
i

esac

With this syntax, you compare a word, usually the value of a variable, against a number of values. If
there is a match, the shell executes the commands from the given value up to the two semicolons (; ;)
that end an individual case.

The entire statement ends with esac, case spelled backward.

Try It Out Choosing Favorites

The following script shows an example of the case statement. Enter this script and save it under the
name choicel:

echo "Which would you rather have,"

echo "ksh, a platypus, or"

echo -n "MS Word for Windows for Windows for Macintosh? "
read choice

case S$choice in
ksh)
echo "There are a lot of neat things you"
echo "can do with the Korn shell."
platypus)
echo "The Platypus Society thanks you."
"MS Word for Windows for Windows for Macintosh")
echo "This is not a real product, you know."

esac
When you run this script, you will be prompted to provide an answer:

$ sh choosel

Which would you rather have,

ksh, a platypus, or

MS Word for Windows for Windows for Macintosh? ksh
There are a lot of neat things you

can do with the Korn shell.

126

Controlling How Scripts Run

Each time you run the choosel script, you can enter a different answer. For example:

$ sh choosel

Which would you rather have,

ksh, a platypus, or

MS Word for Windows for Windows for Macintosh? platypus
The Platypus Society thanks you.

Entering in the last value is left as an exercise.

How It Works

This script offers the choice among three very similar items: a shell, an animal, and an imaginary soft-
ware product. (You can decide which is which.)

Depending on how you answer, the script outputs a different message. In real-world scripts, you are
likely to set a number of variables to different values depending on the match in the case statement. For
example, you may have a script that determines the operating system using the uname command and
then uses a case statement to specify the paths to the CD-ROM drive based on the operating system.
This type of script is very common.

For another example usage, a networking script may need to take different options if the networking is a
wired Ethernet link, a wireless 802.1x link, or an IP over USB connection. These choices would result in
different commands needed to start up networking, or at least different command-line options. The
case statement is a good choice for these types of problems.

Handling Problematic Input

There is a big problem with the choosel script, however. You can see this problem if you enter some-
thing unexpected. For example:

S sh choosel

Which would you rather have,

ksh, a platypus, or

MS Word for Windows for Windows for Macintosh? fred

$

If you enter an unexpected value, such as fred, the script does nothing. It cannot handle unexpected
input. Of course, this means the choosel script is not very robust and will likely fail if you release this
software to the wide world.

To deal with this situation, the case statement also includes a catch-all value of *, which you can use to
capture values that would normally fall through a case statement, matching nothing. The syntax follows:

case word in

valuel)
commandl
command?2

127

Chapter 3

last_command
value2)

commandl

command?2

last_command

commandl
command?2

last_command
HH

esac

Try It Out Handling Unexpected Input

The following script handles unexpected input as part of a quiz on operating system favorites:

echo "Please enter your favorite operating system, "
echo -n "linux, macosx, windows, amigados, or beos: "
read os

case $o0s in

linux)

echo "Way cool, you like Linux."
macosx)

echo "You like Roman numerals."
windows)

echo "Time to check for a virus."
amigados)

echo "AmigaDOS will never die."
beos)

echo "Count yourself lucky."
*)

echo "Why did you choose $os?"

esac
When you run this script, you will be asked to enter your favorite operating system. For example:

$ sh case_os

Please enter your favorite operating system,
linux, macosx, windows, amigados, or beos: beos
Count yourself lucky.

128

Controlling How Scripts Run

Each value displays a different message. For example:

S sh case_os

Please enter your favorite operating system,
linux, macosx, windows, amigados, or beos: macosx
You like Roman numerals.

If you enter an unexpected value, you will see output like the following;:

S sh case_os

Please enter your favorite operating system,

linux, macosx, windows, amigados, or beos: Macintosh System 7
Why did you choose Macintosh System 72

How It Works

This script uses the techniques of the last example script but adds a *) construct to handle input that
does not match any of the other values. Thus, if you enter Macintosh System 7, as shown shown previ-
ously, then the shell executes the *) construct to handle unexpected input. (This is doubly unexpected,
as Mac OS X is so much better.)

Note that this example is case-sensitive, so BeOS, for example, would not match beos.
This quiz, while being completely objective, does allow the user to enter in unexpected values, sort of

like a write-in candidate in an election. As a general rule, all case statements should include the *)
construct to handle unexpected values.

Using case with the C Shell

The C shell doesn’t support the case statement like the Bourne shell. The C shell, however, does provide
a switch statement, very similar to the Bourne shell case statement.

The C shell syntax is:

switch (word)
case valuel:
commands
breaksw
case valuel:
commands
breaksw
default
commands
endsw

Instead of case, you see a switch statement. (This is one area where the C shell is quite similar to the

C programming language.) Each value is specified by a case construct. Each case block ends with a
breaksw statement, short for break switch. (This mimics the C language break statement.)

129

Chapter 3

A default block specifies the action to take if none of the cases matches.

The entire switch statement ends with an endsw statement, short for end switch.

Try It Out Casing the C Shell

The following script provides the operating system quiz from case_os in C shell syntax, using the
switch construct:

echo "Please enter your favorite operating system, "
echo -n "linux, macosx, windows, amigados, or beos:
set os = $<

switch ($os)
case linux:
echo "Way cool, you like Linux."
breaksw
case macosx:
echo "You like Roman numerals."
breaksw
case windows:
echo "Time to check for a virus."
breaksw
case amigados:
echo "AmigaDOS will never die."
breaksw
case beos:
echo "Count yourself lucky."
breaksw
default
echo "Why did you choose $os?"
endsw

Enter this script and save it under the name switch_os. You can compare this script to the previous
example, case_os.

When you run this script, you will see the familiar quiz. The output should be the same as the previous
example, case_os, even if you enter an unexpected value:

$ csh switch_os
Please enter your favorite operating system,

linux, macosx, windows, amigados, or beos: wince
Why did you choose wince?

How It Works

This script is a conversion, called a port, of the case_os script to the C shell syntax. The switch state-
ment follows the syntax shown previously.

In addition, this script shows how a C shell script reads input from the user. For example:

set os = $<

130

Controlling How Scripts Run

This statement serves the same purpose as the Bourne shell syntax using read:

read os

Looping While a Condition Is True

Like the for loop, the while loop repeats its block of commands a number of times. Unlike the for
loop, however, the while loop iterates until its while condition is no longer true. The basic syntax is:

while [test_condition]
do

commands. . .
done

The while loop is sort of like a combination of an i f statement and a for loop. Use the while loop
when you don’t know in advance how many iterations you need.

Note that the C shell sports a different syntax for a while loop:
while (test_condition)

commands. . .
end

Try It Out Looping While a Condition Is True

With the Bourne shell while loop, you can create complex loops, as the following mini command inter-
preter shows. Enter the following script and save it under the name while:

command="init" # Initialization.
while ["$Scommand" != "exit"]
do

echo -n "Enter command or \"exit\" to quit: "
read command
echo

case S$Scommand in
1s)
echo "Command is 1s."
who)
echo "Command is who."
;
if [Scommand != "exit"]
then
echo "Why did you enter S$command?"
fi

131

Chapter 3

esac

done
When you run this script, you will be prompted to enter commands:

$ sh while
Enter command or "exit" to quit: 1ls

Command is 1ls.
Enter command or "exit" to quit: who

Command is who.
Enter command or "exit" to quit: type

Why did you enter type?
Enter command or "exit" to quit: exit

Enter exit to quit the script.

How It Works

This example script manages to combine a while loop, a case statement, an if statement, and the read
command. The while loop forms the outer part of a primitive command interpreter.

Each iteration prompts the user to enter a command. The case statement then outputs a different mes-
sage based on the command. The catch-all case, *, further checks whether the user entered exit and
outputs a message only if the user did not enter exit.

The loop then goes to the top and tests the while loop condition. If the user entered exit, the while
loop test fails, and the shell jumps over the do-done block to the next statement after the while loop, of

which there is none, so the script exits.

Note that this script does not interpret the user input; it merely checks this input for the text exit.

Looping Until a Condition Is True

The until loop is very similar to the while loop. With while, the test must be true to execute the block
of commands in the loop. With until, the test must be false. Otherwise, the two loops are the same.

Think of until as “loop until a condition is true” and while as “loop while this condition remains

true.” In other words, until just reverses the test. The following example shows this test reversal by
modifying the previous example to use the until statement.

Try It Out Looping Until a Condition Is Met

Enter the following script and save it under the name until:

132

Controlling How Scripts Run

command="init" # Initialization.
until ["$command" = "exit"]
do

echo -n "Enter command or \"exit\" to quit: "
read command
echo

case S$command in
1s)
echo "Command is 1s."
who)
echo "Command is who."
]
if [Scommand != "exit"]
then
echo "Why did you enter S$command?"
fi

esac

done
When you run this script, you should see the following output:

$ sh until
Enter command or "exit" to quit: ls

Command is 1s.
Enter command or "exit" to quit: whos

Why did you enter whos?
Enter command or "exit" to quit: who

Command is who.
Enter command or "exit" to quit: exit

How It Works

The until script is almost the same as the while script; just the test at the top of the loop changed. Note
how the test must be reversed. For example:

["S$Scommand" = "exit"]

This test results in a true value if the value of the variable command equals exit. The while loop, on the
other hand, used a different test:

["Scommand" != "exit"]

This test results in a true value if the value of the variable command does not equal exit.

133

Chapter 3

Summary

Yow. That is a lot of syntax for one chapter. This chapter includes the basics on how to control which
commands in your script get executed. These basics include:

a

You can use the syntax $ {variable} to access the value of a variable. This syntax is the same as
$variable, but the curly braces clearly delineate the start and end of the variable name. This
means the variable name cannot get merged into adjacent text.

The for loop allows your script to iterate a given number of times. A special variant of the for
loop iterates over files using wildcard syntax, such as * and *. txt.

The if statement executes a command and tests whether the results of the command are true
or false.

A special command named test provides a zillion command-line options to test different
conditions.

You can use [] in place of the test command, placing the test command-line options and
arguments between square brackets.

The while loop iterates while a condition is true. When the condition resolves to false, the
while loop stops.

The until loop reverses the while loop test. The until loop iterates while the condition is
not true.

The next chapter expands the use of shell scripts to the overarching computer environment, discussing
operating system issues, how shells start up, and how to turn your shell scripts into executable commands.

Exercises

134

1.

2.

Run the choosel example script and enter the imaginary Microsoft product name. Be sure to
have your license key ready.

Extend the my1s or myls2 shell scripts to list the files in a different directory from the current
directory, such as /usr/local. The script should still output the name of all the files in the directory.

Enhance the script you wrote for Exercise 2 to place the name of the directory in a variable and
access the variable in the for loop.

Enhance the script you wrote for Exercise 3 to ask the user for the name of the directory to list.

Enhance the script you wrote for Exercise 4. This new script should ask the user the directory to
list and then should output / after directory names and * after executable files. Do not output *
if the file is a directory (and has execute permissions on the directory).

Interacting with
the Environment

No shell script is an island. Your scripts run within the environment provided by your computer
and operating system. For shell scripts, most systems provide a Unix-like environment, which
helps a lot because your scripts can query the environment in a consistent manner across systems.
This includes Mac OS X, based on Berkeley Unix, and Linux, a Unix work-alike. Even Windows
and QNX provide Unix-like environments for shell scripts.

A Unix-like environment provides special settings called environment variables, which hold impor-
tant values for determining where commands are located, as well as the user’s home directory.

This chapter covers:

0 Examining the settings in your system’s environment, getting and setting environment
variables

0O Customizing your account, especially how shells start up

0 Handling command-line arguments and using these arguments to change the way your
scripts behave

0 Making scripts executable so your scripts appear to the end user as operating system
commands, no different from commands such as 1s and cp

Examining Environment Variables

Environment variables are a type of shell variables.

For the most part, environment variables are the same as other shell variables. There are four main
differences, however:

O Environment variables are set by the environment, the operating system, during the
startup of your shell. (This process is not magic, as you will see in this chapter.)

Chapter 4

Q Shell variables are local to a particular instance of the shell —for example, the shell instance
running a script. Environment variables are inherited by any program you start, including
another shell.

0 Environment variables have a special meaning that applies to all scripts.

QO You must make a special operation to set an environment variable.

The following sections cover these points in depth.

Reading Environment Variables

Environment variables are treated, in most respects, as normal shell variables. That means that if you
have an environment variable named HOME, you can access the value of this variable by using the dollar
sign ($) constructor — for example, $ HOME. This part is no different than for other variables that you cre-
ate within your shell scripts.

The most crucial thing about these variables, however, is that they hold settings that presumably reflect
the user’s environment and wishes. (Sometimes these variables reflect the administrator’s wishes
instead.)

For example, the LANG environment variable, if set, specifies the user’s locale, a combination of a code
for the user’s language, as well as any variants. A user could have a locale of English with a code of en.
A user in the United Kingdom would have a variant of English in the UK, en_Uk, whereas a user in the
United States would have a variant of English in the US, en_us. A spell-checking program can then use
the LANG environment variable to determine which spelling dictionary to load and thus determine
whether specialization or specialisation is correct, for example.

Thus, your scripts should honor environment variable settings where possible. This is complicated, how-
ever, by the fact that not all systems set all variables. Thus, your scripts always have to check whether a

variable is set first and then display a default value if necessary.

The following table lists the most commonly available environment variables.

Variable Usage

COLUMNS Number of text characters that can fit across one line
in the shell window

DISPLAY Names the graphics display for systems using the X
Window System

HISTSIZE Number of commands to store in the command his-
tory (bash and ksh)

HOME User’s home directory

HOSTNAME Computer’s host name

LANG Specifies user’s locale, such as French in France,

French in Canada, French in Switzerland

136

Interacting with the Environment

Variable

LINES
PATH
PWD
SHELL
TERM
USER

Usage

Number of text lines that can fit in the shell window
List of directories searched for commands

Current directory

Default shell

Ancient terminal type, if applicable

User name

To see what is defined within your shell, use the set command.

Use setenv instead with csh and tcsh. See below for more on this.

Built into the shell, the set command lists all the variables currently set. If you have access systems run-
ning different operating systems, compare the different environments. The following examples show
common settings on different operating systems.

Note that set shows more than just the true environment variables. This is explained in more detail later
in this chapter.

Try It Out

Listing the Environment on Linux

On a Fedora Core 2 Linux system, you will see an environment like the following:

S set

BASH=/bin/bash

BASH_VERSINFO=([0]="2" [1]="05b" [2]="0" [3]="1" [4]="release"
[5]="1386-redhat-1linux-gnu")

BASH_VERSION='2.05b.0(1)-release'

COLORS=/etc/DIR_COLORS.xterm

COLORTERM=gnome-terminal

COLUMNS=73

DESKTOP_SESSION=default

DIRSTACK= ()

DISPLAY=:0.0

EUID=500

GDMSESSION=default
GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-tNORrP/socket

GROUPS= ()

GTK_RC_FILES=/etc/gtk/gtkrc: /home2/ericfj/.gtkrc-1.2-gnome2
G_BROKEN_FILENAMES=1

HISTFILE=/home2/ericfj/.bash_history

HISTFILESIZE=1000

HISTSIZE=1000

HOME=/home2/ericf]j

HOSTNAME=kirkwall

HOSTTYPE=1386

137

Chapter 4

IFS=S$' \t\n'
INPUTRC=/etc/inputrc
KDEDIR=/usr
LANG=en_US.UTF-8
LESSOPEN=' | /usr/bin/lesspipe.sh %s'
LINES=24
LOGNAME=ericfj
LS_COLORS='1no=00:£i=00:d1=00;34:1n=00;36:pi=40;33:50=00;35:0bd=40;33;01:cd=40;33;01:
or=01;05;37;41:m1=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;32:
* . btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;31:
.taz=00;31:.1zh=00;31:*.2zip=00;31:*.2=00;31:*.2=00;31:*.gz=00;31:*.bz2=00;31:
.bz=00;31:.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:*.gif=00;35:*.bmp=00;35:
* . xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:"
MACHTYPE=1i386-redhat-1linux-gnu
MAIL=/var/spool/mail/ericfj
MAILCHECK=60
OPTERR=1
OPTIND=1
OSTYPE=1inux-gnu
PATH=/usr/kerberos/bin: /usr/local/bin: /usr/bin: /bin:/usr/X11R6/bin: /home2/ericfj/
bin:/usr/java/j2sdkl.4.1_03/bin:/opt/jext/bin
PIPESTATUS=([0]="0")
PPID=19277
PROMPT_COMMAND="'echo -ne "\033]0;${USER}@S${HOSTNAME%%.*}:${PWD/#SHOME/~}\007""
PS1='[\u@\h \W]\S '
PS2="'> '
pS4="+ "
PWD=/home2/ericfj/web/local
QTDIR=/usr/lib/qgt-3.3
SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/19167
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SHLVL=2
SSH_AGENT_PID=19215
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-tkel9167/agent.19167
SUPPORTED=en_US.UTF-8:en_US:en
TERM=xterm
UID=500
USER=ericfj
WINDOWID=20971638
XAUTHORITY=/home2/ericfj/.Xauthority
=env

How It Works

As you can see from the listing, there are a lot of environment variables set on Linux. Many of these vari-
ables are specific to particular programs or purposes. For example, the MATLCHECK and MAIL environ-
ment variables are used for determining how often to check for new email as well as where to check.

As a best practice, you should define all environment variables to have uppercase names. This follows
existing conventions.

138

Interacting with the Environment

The online documentation for each program that uses an environment variable should describe what
variables are used as well as how the variables are used. For example, the command to view online doc-
umentation, man, uses the MANPATH environment variable, if set, to determine which directories to look
for online manuals.

Try It Out Listing the Environment on Mac OS X

On a Mac OS X system, you will see variables similar to the following;:

S set

BASH=/bin/bash
BASH_VERSINFO=([0]="2" [1]="05b" [2]="0" [3]="1" [4]="release"
[5]="powerpc-apple-darwin7.0")
BASH_VERSION='2.05b.0(1)-release'
COLUMNS=80

DIRSTACK= ()

EUID=501

GROUPS= ()
HISTFILE=/Users/ericfj/.bash_history
HISTFILESIZE=500

HISTSIZE=500

HOME=/Users/ericfj
HOSTNAME=Stromness.local
HOSTTYPE=powerpc

IFS=$' \t\n'

LINES=24

LOGNAME=ericfj
MACHTYPE=powerpc-apple-darwin7.0
MAILCHECK=60

OPTERR=1

OPTIND=1

OSTYPE=darwin7.0

PATH=/bin:/sbin: /usr/bin: /usr/sbin
PIPESTATUS=([0]="0")

PPID=524
PS1="'\h:\w \u\$ '
PS2="'> '
PS4="+ '

PWD=/Users/ericfj
SECURITYSESSIONID=10967b0
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SHLVL=1

TERM=vt100

TERM_PROGRAM=1iTerm.app

UID=501

USER=ericfj

_=/etc/bashrc

_ CF_USER_TEXT_ENCODING=0x1F5:0:0

139

Chapter 4

How It Works

Note how similar the Mac OS X output is when compared to the Linux output. To a shell script, both
operating systems provide an environment that is very similar. Contrast this with the overall operating
environments, which differ greatly.

Try It Out Listing the Environment on Windows XP

On Windows XP under the Cygwin environment, you will see variables like the following;:

140

S set

lgg=lgg\’

IC:="'C:\cygwin\bin"

ALLUSERSPROFILE='C:\Documents and Settings\All Users'
ANT_HOME='C:\ericfj\java\apache-ant-1.5.4"
APPDATA='C:\Documents and Settings\ericfj\Application Data'
BASH=/usr/bin/bash

BASH_VERSINFO=([0]="2" [1]="05b" [2]="0" [3]="1" [4]="release"
[5]="1686-pc-cygwin")
BASH_VERSION='2.05b.0(1)-release'

COLUMNS=80

COMMONPROGRAMFILES='C:\Program Files\Common Files'
COMPUTERNAME=GURNESS

COMSPEC="'C: \WINDOWS\system32\cmd.exe'
CVS_RSH=/bin/ssh

DIRSTACK= ()

EUID=1006

FP_NO_HOST_CHECK=NO

GROUPS= ()

HISTFILE=/home/ericfj/.bash_history

HISTFILESIZE=500

HISTSIZE=500

HOME=/home/ericf]j

HOMEDRIVE=C:

HOMEPATH="'\Documents and Settings\ericfj'
HOSTNAME=kirkwall

HOSTTYPE=1686

IFS=S$' \t\n'
INFOPATH=/usr/local/info: /usr/info: /usr/share/info: /usr/autotool/devel/info:
/usr/autotool/stable/info:
JAVA_HOME='C:\j2sdk1.4.2_01"

LINES=25

LOGONSERVER="\\KIRKWALL'

MACHTYPE=1686-pc-cygwin

MAILCHECK=60

MAKE_MODE=unix
MANPATH=/usr/local/man: /usr/man: /usr/share/man: /usr/autotool/devel/man: :
/usr/ssl/man
MAVEN_HOME='C:\ericfj\java\maven-1.0-rcl'
NUMBER_OF_PROCESSORS=1

OLDPWD=/usr/bin

OPTERR=1

OPTIND=1

Interacting with the Environment

0S=Windows_NT

OSTYPE=cygwin

PALMTOPCENTERDIR="'C:\Program Files\Sharp Zaurus 2\Qtopia Desktop'
PATH=/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin: /cygdrive/c/WINDOWS/system32:
/cygdrive/c/WINDOWS: /cygdrive/c/WINDOWS/System32 /Wbhem: /cygdrive/c/ericfj/apps:/cyg
drive/c/ericfj/java/apache-ant-1.5.4/bin:/cygdrive/c/j2sdkl.4.2_01/bin:/usr/bin:.
PATHEXT="'.COM; .EXE; .BAT; .CMD; .VBS; .VBE; .JS; .JSE; .WSF; .WSH'
PIPESTATUS=([0]="0")

PPID=1

PRINTER='HP LaserJet 2100 PCL6'

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER='x86 Family 15 Model 2 Stepping 9, GenuinelIntel'
PROCESSOR_LEVEL=15

PROCESSOR_REVISION=0209

PROGRAMFILES='C:\Program Files'

PROMPT="'S$PSG'

PS1=$"\\[\\033]10; \\w\\007\n\\033 [32m\\]\\u@\\h \\[\\033[33m\\w\\033 [0m\\]\n$ '
PS2="> "

PS4="+ '

PWD=/home/ericfj

SESSIONNAME=Console

SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
SHLVL=1

SYSTEMDRIVE=C:

SYSTEMROOT="'C: \WINDOWS"'

TEMP=/cygdrive/c/DOCUME~1/ericfj/LOCALS~1/Temp

TERM=cygwin

TMP=/cygdrive/c/DOCUME~1/ericfj/LOCALS~1/Temp

UID=1006

USER=ericfj

USERDOMAIN=0ORKNEY

USERNAME=ericfj

USERPROFILE="'C:\Documents and Settings\ericfj'

WINDIR="'C:\WINDOWS"

_=/home/ericfj/.bashrc

f=

How It Works

In this example, you can see a lot more of the DOS legacy in the use of drive letters such as C:. The
Cygwin package does a good job of merging the Unix assumptions of shell environments with the reali-
ties of the Windows system. Thus, you can see both TP (Unix) and TEMP (Windows) are set to name
temporary directories, as well as both USER (Unix) and USERNAME (Windows).

Handling Local and Environment Variables

Technically, the set command, used for the previous examples, lists all the variables that have a value.
This includes environment variables as well as any other variables, called local variables. Local variables
are variables available within the current shell. Environment variables are variables that have been
exported. Exported variables are available for subshells. And a subshell is a shell launched from within
a shell. Confused yet?

141

Chapter 4

The concept of subshells introduces a hierarchy of shells, meaning that your scripts may operate within
a subsubshell or a subsubsubshell, and so on. It works like this: When you log in, the system runs an
application, typically a shell. This is the ancestor of all further shells you run. This ancestor shell is con-
sidered a login shell, a shell that gets executed for a user login. The ancestor shell sets up the environ-
ment. The ancestor shell then launches a number of applications. For example, in Linux with a graphical
desktop, the login shell runs the X Window System server process (traditionally called X). The X server
process then launches a number of graphical applications, including any shell windows that appear
when you log in. Each of these shell windows is a graphical application. Each of these shell windows, in
turn, runs shells. These shells are subshells.

You can then run shells from within these subshells. You've been doing that for each example so far.
Every time you use commands such as sh, bash, csh, and so on, you are launching a subshell, or more
technically, a subshell of the current subshell. (This is one reason why Unix and Linux systems seem to
run so many processes.)

So when you create an environment variable, your script is setting up the value for subshells, children of
the shell running your script. Thus, this is really useful when your scripts launch child scripts or pro-
grams and want to pass values to the child scripts or programs through environment variables. Your
scripts, however, do not set environment variables in the ancestor shell; environment-variable values

are exported downward, not upward.

In most cases, you will set up the environment for shells when each shell starts. See the section
Customizing Your Account later in this chapter for more on editing the files checked when shells start.

This may seem confusing, but if you use the following guidelines, the situation should make more sense:

Q Set up the environment for your user account using the standard files defined for that purpose
and described in the section Customizing Your Account.

Q Otherwise, set environment variables within shell scripts only if your scripts are calling scripts
or programs and you need to modify the environment for the scripts or programs.

Q Inall other cases, just read environment variables inside your scripts.

Try It Out Listing Only Environment Variables

You can run the env or printenv commands to just list the exported variables — that is, just the variables
considered environment variables. For example:

$ printenv

SSH_AGENT_PID=22389

HOSTNAME=kirkwall

SHELL=/bin/bash

TERM=xterm

HISTSIZE=1000

GTK_RC_FILES=/etc/gtk/gtkrc: /home2/ericfj/.gtkrc-1.2-gnome2

WINDOWID=20971679

OLDPWD=/home2 /ericfj/writing/beginning_shell_scripting

QTDIR=/usr/lib/qgt-3.3

USER=ericfj
LS_COLORS=no=00:£fi=00:di=00;34:1n=00;36:p1=40;33:50=00;35:bd=40;33;01:cd=40;33;
01:0r=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;32:

142

Interacting with the Environment

* . btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;
31:*.taz=00;31:*.1zh=00;31:*.2ip=00;31:*.2=00;31:*.Z2=00;31:*.9z=00;31:*.bz2=00;
31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpi0o=00;31:*.jpg=00;35:*.gif=00;
35:* . bmp=00;35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:
GNOME_KEYRING_SOCKET=/tmp/keyring-QO0LxXNA/socket
SSH_AUTH_SOCK=/tmp/ssh-NVH22341/agent.22341

KDEDIR=/usr

SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/22341
MAIL=/var/spool/mail/ericfj

DESKTOP_SESSION=default
PATH=/usr/kerberos/bin: /usr/local/bin: /usr/bin: /bin:/usr/X11R6/bin:
/home2/ericfj/bin: /usr/java/j2sdkl.4.1_03/bin:/opt/jext/bin
INPUTRC=/etc/inputrc
PWD=/home2/ericfj/writing/beginning_shell_scripting/scripts
LANG=en_US.UTF-8

GDMSESSION=default

SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass

HOME=/home2/ericf]j

SHLVL=2

GNOME_DESKTOP_SESSION_ID=Default

MY_ SHELL=/usr/bin/emacs?2

LOGNAME=ericfj

LESSOPEN= | /usr/bin/lesspipe.sh %s

DISPLAY=:0.0

G_BROKEN_FILENAMES=1

COLORTERM=gnome-terminal

XAUTHORITY=/home2/ericfj/.Xauthority

_=/usr/bin/printenv

Your output, as usual, will differ based on your system’s settings.

How It Works

The printenv command lists fewer variables than the set command because set lists all current vari-
ables. The differences follow — that is, the variables reported by set but not by printenv:

BASH=/bin/bash

BASH_VERSINFO=([0]="2"

BASH_VERSION='2.05b.0(1)-release'

COLORS=/etc/DIR_COLORS.xterm

COLUMNS=80

DIRSTACK= ()

EUID=500

GROUPS= ()

G_BROKEN_FILENAMES=1

HISTFILE=/home2/ericfj/.bash_history

HISTFILESIZE=1000

HOSTTYPE=1386

IFS=$"'

LESSOPEN="' | /usr/bin/lesspipe.sh

LINES=24
LS_COLORS='no=00:f1i=00:di=00;34:1n=00;36:pi=40;33:50=00;35:bd=40;33;01:cd=40;
33;01:0r=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;
32:%.btm=00;32:*.bat=00;32:*.s8h=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;

143

Chapter 4

These variables are considered local to the current shell and not environment variables.

Listing the Environment with the C Shell

The T C shell does support a set command, but it does not output the full environment. For example:

144

31:*.arj=00;31:*.taz=00;31:*.1zh=00;31:*.2zip=00;31:*.2=00;31:*.2=00;31:*.9z=00;
31:*.0bz2=00;31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.3jpg=00;
35:*.gif=00;35:*.bmp=00;35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:"

MACHTYPE=1386-redhat-1linux-gnu
MAILCHECK=60
OPTERR=1

OPTIND=1
OSTYPE=1inux-gnu
PIPESTATUS=([0]="0")
PPID=22454
PROMPT_COMMAND="echo
PS1="'[\u@\h

PS2=">

PS4="+

SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor

SUPPORTED=en_US.UTF-8:en_US:en
UID=500

$ set

COLORS /etc/DIR_COLORS.xterm
_ 11| sort

addsuffix

argv ()

cwd /home2/ericfj
dirstack /home2/ericfj
dspmbyte euc
echo_style both

edit

file /home2/ericfj/.i18n
gid 500

group ericfj
history 100

home /home2/ericfj
killring 30
owd

path (/usr/kerberos/bin /usr/local/mozilla /bin /usr/bin /usr/local/bin
/usr/X11R6/bin /home2/ericfj/bin /usr/java/j2sdkl.4.1_03/bin /home2/ericfj/eclipse
/home2/ericfj/apache-ant-1.5.4/bin)

prompt [%n@%m %c]$

prompt2 $%$R?

prompt3 CORRECT>%R (y|n|el|a)?
shell /bin/tcsh

shlvl 2
sourced 1
status 0

Interacting with the Environment

tcsh 6.12.00

term xterm
tty pts/19
uid 500

user ericfj

version tcsh 6.12.00 (Astron) 2002-07-23 (i386-intel-linux) options
8b,nls,dl,al,kan,rh,color,dspm, filec

The set command shows internal settings of the C shell, not a list of environment variables. The C shell
equivalent of the Bourne shell set command is setenv. When you run setenv from a T C shell on
Linux, you will see output similar to the following:

$ setenv | sort

COLORTERM=gnome-terminal

CVSROOT=:pserver:ericfj@localhost: /home2/cvsrepos

DESKTOP_SESSION=default

DISPLAY=:0.0

G_BROKEN_FILENAMES=1

GDMSESSION=default

GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-w8mvQR/socket

GROUP=ericfj

GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2

HOME=/home2/ericfj

HOST=kirkwall

HOSTNAME=kirkwall

HOSTTYPE=1386-1linux

INPUTRC=/etc/inputrc

JAVA_HOME=/usr/java/j2sdkl.4.1_03

KDEDIR=/usr

LANG=en_US.UTF-8

LESSOPEN= | /usr/bin/lesspipe.sh %s

LOGNAME=ericfj
LS_COLORS=no=00:£fi=00:d1=00;34:1n=00;36:p1i=40;33:50=00;35:bd=40;33;01:cd=40;33;
01:0r=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;
32:*.btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;
31:*%.taz=00;31:*.1zh=00;31:*.2ip=00;31:*.2=00;31:*.%=00;31:*.gz=00;31:*.bz2=00;
31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:*.cpi0o=00;31:*.jpg=00;35:*.gif=00;35:*.bmp=00;
35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:

MACHTYPE=1386

MAIL=/var/spool/mail/ericfj

OSTYPE=1inux

PATH=/usr/kerberos/bin: /usr/local/mozilla: /bin:/usr/bin: /usr/local/bin:
/usr/X11R6/bin: /home2/ericfj/bin: /usr/java/j2sdkl.4.1_03/bin:/home2/ericfj/eclipse:
/home2/ericfj/apache-ant-1.5.4/bin

PWD=/home2/ericfj

QTDIR=/usr/lib/qgt-3.3

SESSION_MANAGER=local/kirkwall:/tmp/.ICE-unix/27573

SHELL=/bin/tcsh

SHLVL=2

SSH_AGENT_ PID=27574

SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-bxy27573/agent.27573

SUPPORTED=en_US.UTF-8:en_US:en

145

Chapter 4

TERM=xterm

USER=ericfj

USERNAME=ericfj

VENDOR=intel

WINDOWID=23068746
XAUTHORITY=/home2/ericfj/.Xauthority

You can also run the printenv or env commands under the C shell to list the environment variables.
For example:

146

$ printenv

COLORTERM=gnome-terminal

CVSROOT=:pserver:ericfj@localhost: /home2/cvsrepos

DESKTOP_SESSION=default

DISPLAY=:0.0

G_BROKEN_FILENAMES=1

GDMSESSION=default

GNOME_DESKTOP_SESSION_ID=Default
GNOME_KEYRING_SOCKET=/tmp/keyring-w8mvQR/socket

GROUP=ericfj

GTK_RC_FILES=/etc/gtk/gtkrc:/home2/ericfj/.gtkrc-1.2-gnome2

HOME=/home2/ericfj

HOST=kirkwall

HOSTNAME=kirkwall

HOSTTYPE=1386-1inux

INPUTRC=/etc/inputrc

JAVA_HOME=/usr/java/j2sdkl.4.1_03

KDEDIR=/usr

LANG=en_US.UTF-8

LESSOPEN=| /usr/bin/lesspipe.sh %s

LOGNAME=ericfj
LS_COLORS=no=00:£i=00:di=00;34:1n=00;36:p1=40;33:50=00;35:0d=40;33;01:cd=40;33;
01:0r=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe=00;32:*.com=00;
32:*.btm=00;32:*.bat=00;32:*.sh=00;32:*.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;
31:*.taz=00;31:*.1zh=00;31:*.2ip=00;31:*.2=00;31:*.Z=00;31:*.9z=00;31:*.bz2=00;
31:%.bz=00;31:%.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.9pg=00;35:*.gif=00;35:*.bmp=00;
35:* .xbm=00;35:*.xpm=00;35:*.png=00;35:*.tif=00;35:

MACHTYPE=1386

MAIL=/var/spool/mail/ericfj

OSTYPE=1inux

PATH=/usr/kerberos/bin: /usr/local/mozilla: /bin:/usr/bin:/usr/local/bin:
/usr/X11R6/bin: /home2/ericfj/bin: /usr/java/j2sdkl.4.1_03/bin:/home2/ericfj/eclipse:
/home2/ericfj/apache-ant-1.5.4/bin

PWD=/home2/ericfj

QTDIR=/usr/lib/qgt-3.3

SESSION_MANAGER=1local/kirkwall:/tmp/.ICE-unix/27573

SHELL=/bin/tcsh

SHLVL=2

SSH_AGENT_PID=27574

SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-bxy27573/agent .27573

SUPPORTED=en_US.UTF-8:en_US:en

TERM=xterm

USER=ericfj

Interacting with the Environment

USERNAME=ericfj

VENDOR=intel

WINDOWID=23068746
XAUTHORITY=/home2/ericfj/.Xauthority

Testing the Environment

As mentioned previously, your scripts should honor environment variable settings. But your scripts also
need to handle the case where certain variables are not set. In most cases, you need a fallback strategy to
handle such instances.

For example, the DISPLAY environment variable names the X Window System display, which represents
a combination of monitor, keyboard, and mouse. Graphical X Window programs use the DISPLAY set-
ting to know which X display to use. On a multiuser system, this can be very important.

Just about every Linux and Unix system uses the X Window System for graphics. Mac OS X systems can
run X as add-on software. You can even run X under Cygwin on Windows.

If the DISPLAY environment variable has a value, then X Window programs should use that value. If the
DISPLAY environment variable is not set, however, a program or script has three choices:

Q Use the default value for the DISPLAY, : 0.0 in this case.
O Assume the X Window System is not running.

Q Alert the user that the DISPLAY variable is not set, and the script can exit. This is called die a
flaming death in shell scripting parlance.

There’s no magic. Your shell scripts need to make similar decisions if crucial variables are not set. The
following Try It Out shows some strategies for handling missing environment variables.

Try It Out Checking Environment Variables
Enter this script and save it under the name check_env:
Checks for environment variables.

Uncomment the following line to remove the variable.
#unset DISPLAY

if ["$DISPLAY" == ""]

then
echo "DISPLAY not set, using :0.0 as default."
DISPLAY=":0.0"

fi

#unset SHELL

i f [n $SHELL n == non]
then

147

Chapter 4

echo "Using /bin/bash, which is the shell you should use."
SHELL=/bin/bash
fi

#unset USER

if ["$USER" == ""]

then
echo -n "Please enter your username: "
read USER

fi

#unset HOME

if ["$SHOME" == ""]
then
Check for Mac 0S X home.
if [-d "/Users/$USER"]
then
HOME="/Users/SUSER"

Check for Linux home.
elif [-d "/home/$SUSER"]
then

HOME="/home/$USER"

else
echo -n "Please enter your home directory: "
read HOME
echo

fi

fi
Display all the values.

echo "DISPLAY=$DISPLAY"
echo "SHELL=$SHELL"
echo "USER=SUSER"

echo "HOME=$HOME"

When you run this script, you will see output like the following:

$ sh check_env
DISPLAY=:0.0
SHELL=/bin/bash
USER=ericfj
HOME=/home2/ericfj

148

Interacting with the Environment

The output will differ based on your system’s values for environment variables. On a Mac OS X system,
for example, you will see output like the following:

$ sh check_env

DISPLAY not set, using :0.0 as default.
DISPLAY=:0.0

SHELL=/bin/bash

USER=ericfj

HOME=/Users/ericfj

Note how this Macintosh does not have the X Window System running.

How It Works

In the check_env script, the general strategy is to try to find a reasonable value for missing variables.
If something cannot be guessed, the next step is to ask the user for the information.

If a value isn’t set, then the script will try to determine the missing data. For example, if the HOME variable
isn’t set, then the check_env script will check for /Users/username, the Mac OS X default home directory,
and /home/username, the Linux default home directory. If neither of these directories exists, then the
check_env script will prompt the user to enter the missing data.

Going through the tests in detail, the script sets the DISPLAY variable to : 0.0 if DISPLAY has no value.
This should work on many Unix and Linux systems but not Mac OS X, which by default does not
include the X Window System software.

The check_env script will set the DISPLAY variable if needed. Note that this script is not exporting the
value of the variable (see below), so any setting will be lost when the script ends. This is true of all the
other tests as well.

The test of the SHELL environment variable sets the shell to /bin/bash if there is no value. The script
also outputs a message to alert the user to this fact.

If the USER environment variable is not set, the script prompts the user to enter in the username. While
you could try to guess the username, this is generally difficult, so the script asks the user to provide this
information.

The test for the HOME environment variable needs a value for the USER environment variable so that it
can check for user home directories if needed. If the HOME variable has no value, the script first checks
for a Mac OS X-type home directory and then a Linux-type home directory.

If neither of these home directories exists, the script asks the user to enter the location of the user’s home
directory.

At the end of the script, the script outputs all the current values for the four variables.
You can verify how this script works by using the unset command. Prior to each test, the check_env
script has an unset line commented out. Uncomment the line to unset the given variable. That way, you

force the script to assume the variable is not set and therefore exercise the script logic associated with
finding a value.

149

Chapter 4

To uncomment a line, remove the leading # character that marks the line as a comment.

This is a common technique for testing scripts.

Setting Environment Variables

You can read environment variables just like other shell variables. You can also set environment
variables just like other shell variables. But you must take extra steps to affix your new values into the
environment.

Remember that this environment applies only to programs and shells your script launches. That is, the
environment applies only to subshells. You need to modify the environment for shells by editing the files
listed in the section Customizing Your Account so that the environment gets properly propagated to
subshells.

There are two main reasons to set environment variables:

0 You want to customize your user account.

O Your script needs to set an environment variable that is used by a command or script it calls.
To set an environment variable, you need to export it. To set a variable, you need the following syntax:
VARIABLE=VALUE

To export a variable into the environment of child processes — that is, to make a plain old shell variable
into a super-duper environment variable —use the export command:

export VARIABLE
Thus, you will often see the following pattern used in shell startup scripts:

var=value
export var

You can combine the two commands onto one line, using the semicolon separator. For example:
var=value; export var

You can also use a shorthand version with just the export command:
export var=value

The export command may export more than one variable at a time. For example:

varl=valuel
var2=value2
var3=value3
export varl var2 var3

150

Interacting with the Environment

You will find all of these variants used in various shell scripts you encounter, especially in scripts that
initialize shells.

In the bash shell, you can also use the set -a command to export all variables set in the shell:
$ set -a
Your scripts should not assume that a user has run this command, however.

You can see how the export command works, as well as how to create your own environment variables,
by running the following example scripts.

Try It Out Exporting Variables

Enter the following script and save it under the name echo_myvar:
echo "inside child script, MY _VAR=SMY_VAR"

This script outputs the value of the shell variable 1y VAR. The echo_myvar script, however, does not set
the variable. That job is for the set_myvar script, following:

Set my_var without exporting.
MY_VAR="Tempest"

echo -n "No export: "
sh echo_myvar

Now, export and try again.

echo -n "export:
export MY_VAR

sh echo_myvar
Enter this script and save it under the name set_myvar.
To run these scripts, run the set_myvar script. You should see output like the following:

S sh set_myvar
No export: inside child script, MY_VAR=
export: inside child script, MY VAR=Tempest

How It Works

The echo_myvar script just outputs the value of the variable my_VAR. This script does not set any value,
so the script is utterly dependent on the environment in which it runs. If the environment does not set
the variable, the echo_myvar script will display no value. Only if the environment has set a value into
the My_ VAR variable will the echo_myvar script be able to display any value.

151

Chapter 4

The set_myvar script sets the variable MY_VAR to a value and then calls the echo_myvar script. The
echo_myvar script, however, does not see any value for this variable. That’s because the set_myvar
script hasn’t exported the value. Thus far, it has just set the variable.

Next, the set_myvar script calls the export command to export the MY_ VAR variable. It then calls the
echo_myvar script. This time, the echo_myvar script sees a value in the MY_VAR variable.

Setting Environment Variables in the C Shell
The variable-setting examples so far have used the syntax for the Bourne shell, sh, supported by ksh and
bash as well. As you’d expect, the C shell requires a different syntax, using the setenv built-in shell
command. The setenv syntax follows:

setenv variable value

Note that there is no equal sign in this syntax.

For a good source of csh examples, see the system files /etc/csh.login and /etc/csh.cshre, the sys-

tem files for initializing the C shell (and tcsh, too), as covered in the section Customizing Your Account.
For example:

setenv PATH "/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin"
setenv MAIL "/var/spool/mail/SUSER"

You do not call export in csh or tcsh.

Reading Values into the Current Environment
When you run a script, your current shell, such as bash, launches a child shell, most often sh, to run the
script. You can instead execute a script that modifies the current shell environment using the source
command.

The basic syntax is:

source script_filename

The source command runs the given script in the context of the current shell, not in a child shell. This
command is most often used to read in shell startup files to customize the shell.

In addition to the source command, you can use the dot (.) command:
script_filename

This has the same effect as the source command.

Customizing Your Account

When a shell starts up, it reads from a file or files to initialize settings for your system. These files are
shell scripts. Some of these files, such as /etc/profile, reside in system directories. Most users cannot

152

Interacting with the Environment

modify these files. Other files reside within your home directory. These files are available for you to
modify as needed.

Any system files should normally be left alone, as they establish the proper defaults for your system.
Administrators might customize these files to allow for sitewide settings.

The files in your home directory, however, are intended for you to modify as needed. You can add any
commands you want, using the proper shell syntax, into your personal startup files.

Each shell has a set of files that it looks for, by name. Virtually all personal startup files are located in
your home directory, and all but one start with a dot.

Remember that files with names that start with a dot are considered hidden files. Hidden files don’t appear
in file listings without special command-line options and are ignored by most shell globs, such as *.

The files must have exactly the right name, or the shell will ignore them. For example, for the bash shell,
one of the files is .bashrc. If you want to use this file to initialize bash, you must name it . bashrc (with
a leading dot), and the file must reside in your home directory. You must also have read permission for
this file.

With a very long history, shells typically support more than one file to hold initial settings. Thus, you
may be able to choose from a number of file names, such as .bash_profile or .bash_login, both of
which serve the same purpose.

Don't try to set environment variables unless you know how the variable is used.
You may end up messing up applications on your system, applications that expect a
particular value in an environment variable.

The following sections describe how each shell starts.

How the Bourne Shell Starts Up

If you run the Bourne shell as a login shell, it looks in your home directory for a file named .profile.
The shell then sources the commands in this file to read any settings into the current environment.

The Bourne shell does this only if the shell is a login shell — that is, the shell run when you first log in.
The Bourne shell does not read the .profile file when subsequent shells start.

The distinction between login shells and other shells is important to how all the shells start.

How the Korn Shell Starts Up

When you run ksh as a login shell, it looks for a file in your home directory named .profile and
sources the commands in that file. This is the same as the Bourne shell.

If you run ksh as a non-login shell, the Korn shell looks for a startup file named by the ENV environment
variable. This is similar to the C shell’s . cshrc file.

153

Chapter 4

If ENv names a directory, the Korn shell looks for a file named ksh_env within that directory. If ENV
names a file, the Korn shell loads that file.

How the C Shell Starts Up

When you start csh as a login shell, it sources the commands in /etc/csh.cshrc and /etc/csh.login.
Then csh looks for a file in your home directory named . cshrc and sources the commands in that file.
After that, csh looks for a file in your home directory named . login and sources the commands in that
file. On logout, a csh login shell sources the commands in /etc/csh. logout and the . logout file in
your home directory.

For non-login shells, csh sources the commands in /etc/csh.cshre and then . cshre in your home
directory.

How the T C Shell Starts Up

The T C shell starts up and acts similarly to the C shell. The main difference is that you can name the
startup file . teshre or . cshre. The T C shell will read either file. As with bash, the purpose for sup-
porting the old . cshrc file is to make it easier for users to migrate from csh to tcsh.

How Bash Starts Up

Bash combines features of the C shell, the Bourne shell, and the Korn shell. Thus, you will see a number
of files that appear similar to the files used by ksh or csh.

When you run bash as a login shell, it first executes the /etc/profile file. Then bash looks for files in
your home directory. Bash looks for:

a .bash_profile
4 .bash_login

a .profile

Bash looks in this order and executes the first file found. The intent is to make it easier to switch from
ksh or csh to bash.

When a login shell exits, bash looks for a file named .bash_logout in your home directory and sources
the commands in the file.

You can launch bash as a login shell using the --1ogin option. For example:
$ bash --login
Use the --noprofile option to tell a bash login shell not to read the login files on startup.

When you run bash as a child shell and not as a login shell, bash looks in one of two locations. If the
shell is interactive, bash looks for a file named .bashrc in your home directory. Otherwise, bash checks

154

Interacting with the Environment

for an environment variable named BASH_ENV. The BASH_ENV variable serves the same purpose and

usage as the ksh ENV environment variable.

Use the --norc to tell bash to not run the .bashrc file. Use the --rcfile option to tell a noninterac-
tive, non-login bash to use a different file name than .bashrc in your home directory.

The following table summarizes the startup, login, and logout files for the main shells.

Shell Startup File Login File
bash .bashrc (if not login shell /etc/profile, then
but interactive), .bash_profile, or
$BASH_ENV (if non- .bash_login, or
interactive and not login) .profile
csh /etc/csh.cshre, then /etc/csh.cshre, then
.cshrc /etc/csh.login, then
.cshre, then .login
ksh $ENV .profile
sh None /etc/profile, then
.profile
tesh /etc/csh.cshre, and /etc/csh.cshre, then
.teshre or .cshrc /etc/csh.login, then
.teshre or .cshrc,
then .login

Logout File

.bash_logout

/etc/csh.logout,
then .logout

None

None

/etc/csh.logout,
then .logout

unexpected ways.

where: in the shell initialization files.

Don’t depend on shell customizations. While it is great that you can customize your
environment, you should not write your shell scripts to depend on these customiza-
tions. That’s because once you move to another system, your scripts may fail in

Because the initialization of the shells is performed while the shell starts up, it is
not always apparent what is causing a particular problem. You may spend hours try-
ing to figure out what is wrong in your shell script when the problem lies else-

Handling Command-Line Arguments

Another area where scripts interact with their environment is the command line. Just as you can pass
command-line options and arguments to commands, you can also pass these to shell scripts. Of course,
passing items on the command line is the easy part. The hard part comes in what do you do with them

inside your scripts.

The first step is to examine all the items passed on the command line to your script.

155

Chapter 4

Reading Command-Line Arguments with the Bourne Shell

When the Bourne shell runs a script, it places the command-line arguments in special variables that you
can access within your script. For example, the variable $1 holds the first item on the command line for
your script. This can be a command-line option, such as -v, or a command-line argument, such as the
name of a file. The item in the first position is stored in $1.

That’s why $1 and the like are called positional variables.

The following table lists the special variables set by the Bourne shell for the command-line arguments.

Special Variable Holds

$0 Name of the script from the command line
$1 First command-line argument

$2 Second command-line argument

$3 Third command-line argument

$4 Fourth command-line argument

$5 Fifth command-line argument

$6 Sixth command-line argument

$7 Seventh command-line argument

$8 Eighth command-line argument

$9 Ninth command-line argument

$# Number of command-line arguments

$* All command-line arguments, separated with spaces

The script itself is given the special variable $0 (zero). The shell sets $0 with the name of the script, as it
appears on the command line.

The command-line arguments are split out into separate variables, $1 to $9. There is no $10 and above.
You are not limited to only nine arguments, however. The special variable $* holds all the arguments.
In addition, $# holds a count of the number of arguments.

The Korn shell understands {10} for the tenth argument, and so on.

Note that $0 is not counted and not considered part of $*.

156

Interacting with the Environment

Try It Out Listing Command-Line Arguments

The following script lists command-line arguments:
Checks command-line arguments.
echo "Script: S$O"
echo "Number of items on command line: S#"
echo "lst argument: $1"
echo "2nd argument: $2"
echo "All arguments [S$*]"

Enter this script and save it under the file name args. When you run this script with command-line
arguments, you will see output like the following:

$ sh args argl arg2

Script: args

Number of items on command line: 2
1st argument: argl

2nd argument: arg?2

All arguments [argl arg2]

If you run the script with many arguments, you will see output like the following;:

S sh args argl 2 3 4 56 7 8 9 10
Script: args

Number of items on command line: 10
lst argument: argl

2nd argument: 2

All arguments [argl 2 3 4 56 7 8 9 10]

How It Works

The args script first lists the value of the $0 variable, which holds the name of the script. It then lists the
number of arguments, as well as the first two arguments, each called out on its own lines of output.
Finally, the args script outputs all the command-line arguments inside square brackets, [], to show
where the arguments start and end.

This should seem fairly easy, but there are a few quirks, as you can see if you run the args script with
different sets of parameters. For example, run the args script with no parameters:

S sh args

Script: args

Number of items on command line: 0
lst argument:

2nd argument :

All arguments []

157

Chapter 4

There are zero items, and the arguments are empty.
If you run the script with just one argument, you will see output like the following;:

$ sh args argl

Script: args

Number of items on command line: 1
1lst argument: argl

2nd argument:

All arguments [argl]

The value held in $0 is the value of the script file, as passed on the command line. Thus, you may see the
full path to a script or other variants of the file name. For example:

$ sh /home/ericfj/beginning shell scripting/scripts/args argl arg2
Script: /home/ericfj/beginning shell_scripting/scripts/args
Number of items on command line: 2

1st argument: argl

2nd argument: arg2

All arguments [argl arg2]

This example calls the args script with the full path to the script file, which the shell dutifully sets into
the $0 variable.

In addition, you can pass empty arguments that still count as arguments. For example:

$ sh args argl "" " " arg4
Script: args

Number of items on command line: 4

lst argument: argl

2nd argument:

All arguments [argl argd]

In this example, the first argument is argl, a normal-looking argument. The second argument, however,
is the empty text string " ". The third argument is a long text string of spaces, and the fourth argument
slides back into normalcy with a value of arg4.

When the script shows the value of $* and encloses $* in quotes (with or without extra text, as in the
args script), you see all the spaces in $3 in the output.

Because a space acts as a separator on the command line, and an argument can have spaces (or consist
entirely of spaces), you can sometimes generate confusing output. For example:

$ sh args "1 2 3 456 7 8 9"
Script: args

Number of items on command line: 1
1st argument: 1 2 3 456 7 89
2nd argument:

All arguments [1 2 3 4 5 6 7 8 9]

158

Interacting with the Environment

This script has just one argument, "1 23 4 5 6 7 8 9". But because of the spaces in the argument, when
the args script outputs the value of $*, it appears as if there were nine command-line arguments.

So your scripts need to be careful when working with command-line arguments.

Command-line arguments can be especially hard on Windows and Mac OS X, where directories with
spaces in their names are common, such as the Windows C:\Program Files directory.

Thus far, the example script has just listed the command-line arguments. The next step is to actually
make use of them, as in the following Try It Out.

Try It Out Using Command-Line Arguments

The my1s scripts from Chapter 3 created a simple form of the 1s command. You can extend the scripts
from before to have the user pass the name of the directory to list on the command line. Enter the follow-
ing script and save it under the name my1s3:

Assumes $1, first command-line argument,
names directory to list.

cd s1
for filename in *
do

echo $filename
done

When you run this script, you will see output like the following, depending on the name of the directory
you pass to the script:

S sh myls3 /usr/local
bin

etc
games
include
lib
libexec
man
sbin
share
src

How It Works

The my1s3 script extends the previous myls script from Chapter 3 and takes the value of the first com-
mand-line argument as the name of a directory to list. The my1s3 script then changes to that directory
and then lists out all the files in that directory, one at a time.

Your scripts will perform similarly, using command-line arguments to define directories and files to
work on.

159

Chapter 4

Reading Command-Line Arguments with the C Shell

The C shell and T C shell both support special variables for command-line arguments, similar to sh,
bash, and ksh. The main difference with csh and tcsh, however, is the use of $#argvin place of $#.

With csh and tcsh, the special variable $#argv holds a count of the number of command-line arguments.

Note that tcsh also supports $# as well as $#argv. Both variables hold the same value.

Making Scripts Executable

Up to now, all the scripts require you to run a shell, such as sh, and to pass sh the name of the script file
to execute. This is very different from running normal commands, such as 1s. With 1s, you just type in
the name of the command, 1s. You do not need to pass a script file to 1s to generate the output.

As mentioned previously, you can transform your scripts into full-blown executable commands. Users
can just type in the name of the command, and they never need know that your new command is really
a script.

To transform your script into an executable command, you need to:

Q Mark the script as executable by giving it execute permissions

0O Add aline to your script to tell the shell how to execute the script

The following sections describe how to perform these steps.

Marking Files Executable

Under Unix and Unix-like systems, all executable files, be they scripts, commands, or something else,
must be marked as executable files. An executable file is one that has execute permission. You can change
permissions with the chmod command.

Before changing permissions, however, you should check what permissions are already set. To do this,
use the 1s command with the -1 (ell) option. For example:

$ 1s -1 myls3
-rw-rw-r-- 1 ericfj engineering 124 Oct 12 22:39 myls3

Each rw- describes the permissions for the owner of the file (user ericfj in this example), the group the
file is associated with (engineering in this example), and the final r-- describes the permissions avail-
able to the rest of the world (all other users). The r means read permission. The w means write permis-
sion. A dash means no permission.

So rw- means read and write permission, and r-- means read-only permission. There are no execute
permissions on this file.

160

Interacting with the Environment

To add an execute permission, use chmod. For example:
S chmod u+x myls3

The u+x argument is in a funny form used by chmod. The u means user — that is, permissions for the
user or owner of the file. The + means add permission. The x means execute permission.

You can also use octal numbers for permissions, leading to permissions such as 0666. See the online
manual for the chmod command for more details.

You can now verify that the script has an execute permission with the 1s command:

S 1ls -1 myls3
-rwxrw-r-- 1 ericfj engineering 124 Oct 12 22:39 myls3

You can now see that the owner of the file has rwx permissions, short for read, write, and execute. Our
script file is now an executable command.

Note that if you are using csh or tcsh, you must execute the rehash command to rebuild the internal list
of executables. For example:

$ rehash

After making the script file executable, the next step is to tell your shell (as well as any other shell) how
to execute the file.

Setting the #! Magic Line

Executable files—that is, commands —come from a variety of sources and appear in a variety of formats.
Most commands are compiled executable programs. Most commands were written in the C programming
language and then compiled into the binary code for your system'’s processor.

The main sources of commands, however, take one of the following formats.

Q Compiled executable programs

Q Java executable archives, called jar files

Q Scripts in languages such as Python, Perl, Tcl, Ruby, or Lua

Q Shell scripts
When you try to run an executable command, the first thing the shell must do is determine the type of
file and then use the correct method to launch the command. For example, if the file is a compiled exe-
cutable program, the first few bytes of the file will contain a special code (often called a magic code or

magic number after the file /etc/magic, which holds many such codes). This special code tells the shell
that it needs to launch the file as a compiled executable program.

The shell follows the same type of process for running shell scripts. First, the shell needs to determine

that the file is a script. This process is helped by the fact that scripts are text files. The first few bytes
(as well as all the bytes) of the file must be printable text characters.

161

Chapter 4

Once the shell determines that the file is a script, the next question is what kind of script. The shell needs
to determine what program should run the script. For example, if your shell is bash, but you write a
Bourne shell script, then bash —your shell —needs to determine which program, sh in this case, to
launch to run the script.

By convention, if your script starts with #! (often called a shebang because it starts with a hash-exclamation
point), then the special comment tells the shell which program should interpret the script. So if the very
first line of your script appears as the following, then the shell knows to launch sh to run your script:
#!/bin/sh
Note that this must be the first line of the file. The # must start on the first column of the file. That is, #
must be the first character in the file. Because # starts a comment, if your shell, for some reason, doesn’t
understand this convention, the #! line will be ignored.
The syntax for the #! line is:
#!/full_path_to_interpreter
The interpreter is the program that interprets the script and executes the commands in the script. For
Bourne shell scripts, the interpreter (or shell) is sh, with a full path of /bin/sh. For shells, the interpreter
is the same as the shell program. But for some languages, such as Tcl, you have a choice of two inter-

preters: tclsh and wish, the latter supporting graphical commands.

Regardless of the interpreter, the shell merely takes the part after the #! and then tries to execute that
program.

The following table lists the main locations for shells and interpreters.

Shell or Interpreter Path

ash #!/bin/ash

bash #!/bin/bash

csh #!/bin/csh

ksh #!/bin/ksh

perl #!/usr/bin/perl or #!/usr/local/bin/perl
python #!/usr/bin/perl or #!/usr/local/bin/perl
sh #!/bin/sh

tclsh (Tcl) #!/usr/bin/tclsh or #! /usr/local /bin/tclsh
tesh #!/bin/tcsh or #!/usr/local /bin/tcsh

wish (Tcl) #!/usr/bin/wish or #!/usr/local/bin/wish
zsh #!/bin/zsh

162

Interacting with the Environment

Scripting languages such as Perl and Python use the same mechanism. For example, a script starting
with the following line is clearly a Perl script:

#!/usr/bin/perl

There is a problem with software add-ons, however. If a given interpreter is not installed with the operat-
ing system, the program will likely be installed in /usr/local/bin (for commands added locally) or in some
other directory, but not in /bin or /usr/bin. Linux, however, which treats nearly every software package in
existence as part of the Linux distribution, almost always places these interpreters in the system directories
/bin or /usr/bin. Thus, the #! comment won’t always reflect the path to the shell, unfortunately.

Try It Out Making a Script Executable

Starting with the my1s3 script, described previously, you can create a script that uses the # ! comment to
name the interpreter to run the script. Enter the following and save it under the name my1s4:

#!/bin/sh

Assumes $1, first command-line argument,
names directory to list.

cd s1
for filename in *
do

echo $filename
done

Note that this script is exactly the same as the my1s3 script shown previously, with only the first line differ-
ent. (This line is marked as bold in the preceding code listing.) You can copy the my1s3 file to start editing.

Next, mark the file with execute permissions:
S chmod u+x myls4

C and T C shell users need to run the rehash command after adding a new command to the command
path. Thus, after you call chmod, you should call rehash:

$ rehash
After calling the chmod command, you can run the script as a command in the current directory:

S ./myls4 /usr/local
bin

etc
games
include
lib
libexec
man
sbin
share
src

The output should be the same as for the my1s3 script.

163
