Capítulo 1
Capítulo 2

1. Try at least two text editors and choose one that you find productive.

2. Regardless of which editor you picked in Exercise 1, try entering at least three of the example scripts in this chapter with vi. Try three more scripts with emacs. Discuss what you like and dislike about each editor.

3. Write a script to output the text message “A man, a plan, a canal, Panama” with as many commands as possible. Each command must perform something useful for the script. Furthermore, comments don’t count for the total. See how many commands you can use in your most inefficient script. Use only the shell scripting concepts introduced so far.
4. Write a command to list the contents of the /usr/bin directory (or a directory that has many commands). You can only set and evaluate variables in your script. You cannot call any commands directly. Extend this script to add some command-line options for the file listing. Try -1 (one) to list the files in one column.

5. Modify the example script17 file for users in Canada. Instead of asking for the state the user lives in, Canadian users should be asked which province they live in. Extra credit goes to those who can output all text in both English and French.

6. To prove you are truly an emacs guru, use M-x backward-char and M-x forward-char, the long commands, instead of the left and right arrow keys when modifying the script17 file for the previous question. Aren’t you glad emacs provides this option?

7. Do the same thing with vi when modifying the file script17. Show disdain for the arrow keys and use h, j, k, and l exclusively. If you start to like these keys and become productive, be afraid. Be very afraid.

Capítulo 3

1. Run the choose1 example script and enter the imaginary Microsoft product name. Be sure to have your license key ready.

2. Extend the myls or myls2 shell scripts to list the files in a different directory from the current directory, such as /usr/local. The script should still output the name of all the files in the directory.

3. Enhance the script you wrote for Exercise 2 to place the name of the directory in a variable and access the variable in the for loop.

4. Enhance the script you wrote for Exercise 3 to ask the user for the name of the directory to list.

5. Enhance the script you wrote for Exercise 4. This new script should ask the user the directory to list and then should output / after directory names and * after executable files. Do not output * if the file is a directory (and has execute permissions on the directory).

Capítulo 4

1. Write a script that dies a flaming death if the SHELL environment variable is not set. Come up with a way to verify both cases, set and not set, to prove your script works.

2. Write a script that goes through all the command-line arguments and lists each one, no matter how many arguments there are. Output only the arguments that are not empty. For example, “” is a valid command-line argument, but it is empty and so should not be listed. Output the total number of command-line arguments as well.

3. Write a script to list out all the command-line arguments, but your script must run under the C shell, bash, ksh, and sh. (Hint: The C shell is the trickiest one.)

4. Write a script that takes any number of directories as command-line arguments and then lists the contents of each of these directories. The script should output each directory name prior to listing the files within that directory.

